精英家教網 > 高中數學 > 題目詳情
設函數f(x)=ax+
1
x+b
(a,b為常數),且方程f(x)=
3
2
x
有兩個實根為x1=-1,x2=2,
(1)求y=f(x)的解析式;
(2)證明:曲線y=f(x)的圖象是一個中心對稱圖形,并求其對稱中心.
(1)由
-a+
1
-1+b
=-
3
2
2a+
1
2+b
=3

解得
a=1
b=-1
f(x)=x+
1
x-1
;
(2)證明:已知函數y1=x,y2=
1
x
都是奇函數,
所以函數g(x)=x+
1
x
也是奇函數,其圖象是以原點為中心的中心對稱圖形,
f(x)=x-1+
1
x-1
+1
,
可知,函數g(x)的圖象沿x軸方向向右平移1個單位,
再沿y軸方向向上平移1個單位,即得到函數f(x)的圖象,
故函數f(x)的圖象是以點(1,1)為中心的中心對稱圖形.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=ax+
a+1
x
 
(a>0)
,g(x)=4-x,已知滿足f(x)=g(x)的x有且只有一個.
(Ⅰ)求a的值;
(Ⅱ)若f(x)+
m
x
>1
對一切x>0恒成立,求m的取值范圍;
(Ⅲ)若函數h(x)=k-f(x)-g(x)(k∈R)在[m,n]上的值域為[m,n](其中n>m>0),求k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=ax-
bx
,曲線y=f(x)在點(2,f(2))處的切線方程為7x-4y-12=0,
(1)求y=f(x)的解析式,并求其單調區間;
(2)用陰影標出曲線y=f(x)與此切線以及x軸所圍成的圖形,并求此圖形的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=
ax-1x+1
;其中a∈R

(Ⅰ)解不等式f(x)≤1;
(Ⅱ)求a的取值范圍,使f(x)在區間(0,+∞)上是單調減函數.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=ax-
bx
,曲線y=f(x)在點(2,f(2))處的切線方程為7x-4y-12=0.
(1)求f(x)的解析式;
(2)討論函數f(x)的單調性.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=ax-
bx
,曲線y=f(x)在點(2,f(2))處的切線方程為7x-4y-12=0.
(1)求f(x)的解析式;
(2)求函數f(x)的單調區間.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视