【題目】定義在R上的奇函數f(x),當x≥0時,
f(x)= ,
則關于x的函數F(x)=f(x)﹣a(0<a<1)的所有零點之和為( 。
A.1﹣2a
B.2a﹣1
C.1﹣2﹣a
D.2﹣a﹣1
【答案】A
【解析】解:∵當x≥0時,
f(x)=;
即x∈[0,1)時,f(x)=(x+1)∈(﹣1,0];
x∈[1,3]時,f(x)=x﹣2∈[﹣1,1];
x∈(3,+∞)時,f(x)=4﹣x∈(﹣∞,﹣1);
畫出x≥0時f(x)的圖象,
再利用奇函數的對稱性,畫出x<0時f(x)的圖象,如圖所示;
則直線y=a,與y=f(x)的圖象有5個交點,則方程f(x)﹣a=0共有五個實根,
最左邊兩根之和為﹣6,最右邊兩根之和為6,
∵x∈(﹣1,0)時,﹣x∈(0,1),
∴f(﹣x)=(﹣x+1),
又f(﹣x)=﹣f(x),
∴f(x)=﹣(﹣x+1)=
(1﹣x)﹣1=log2(1﹣x),
∴中間的一個根滿足log2(1﹣x)=a,即1﹣x=2a ,
解得x=1﹣2a ,
∴所有根的和為1﹣2a .
故選:A.
函數F(x)=f(x)﹣a(0<a<1)的零點轉化為:在同一坐標系內y=f(x),y=a的圖象交點的橫坐標.
作出兩函數圖象,考查交點個數,結合方程思想,及零點的對稱性,根據奇函數f(x)在x≥0時的解析式,作出函數的圖象,結合圖象及其對稱性,求出答案.
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)判斷并證明函數的奇偶性;
(2)判斷當時函數
的單調性,并用定義證明;
(3)若定義域為
,解不等式
.
【答案】(1)奇函數(2)增函數(3)
【解析】試題分析:(1)判斷與證明函數的奇偶性,首先要確定函數的定義域是否關于原點對稱,再判斷f(-x)與f(x)的關系,如果對定義域上的任意x,都滿足f(-x)=f(x)就是偶函數,如果f(-x)=-f(x)就是奇函數,否則是非奇非偶函數。(2)利函數單調性定義證明單調性,按假設,作差,化簡,判斷,下結論五個步驟。(3)由(1)(2)奇函數在(-1,1)為單調函數,
原不等式變形為f(2x-1)<-f(x),即f(2x-1)<f(-x),再由函數的單調性及定義(-1,1)求解得x范圍。
試題解析:(1)函數為奇函數.證明如下:
定義域為
又
為奇函數
(2)函數在(-1,1)為單調函數.證明如下:
任取,則
,
即
故在(-1,1)上為增函數
(3)由(1)、(2)可得
則
解得:
所以,原不等式的解集為
【點睛】
(1)奇偶性:判斷與證明函數的奇偶性,首先要確定函數的定義域是否關于原點對稱,再判斷f(-x)與f(x)的關系,如果對定義域上的任意x,都滿足f(-x)=f(x)就是偶函數,如果f(-x)=-f(x)就是奇函數,否則是非奇非偶函數。
(2)單調性:利函數單調性定義證明單調性,按假設,作差,化簡,定號,下結論五個步驟。
【題型】解答題
【結束】
22
【題目】已知函數.
(1)若的定義域和值域均是
,求實數
的值;
(2)若在區間
上是減函數,且對任意的
,都有
,求實數
的取值范圍;
(3)若,且對任意的
,都存在
,使得
成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設點P在△ABC的BC邊所在的直線上從左到右運動,設△ABP與△ACP的外接圓面積之比為λ,當點P不與B,C重合時,( )
A.λ先變小再變大
B.當M為線段BC中點時,λ最大
C.λ先變大再變小
D.λ是一個定值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知A,B,C為直角坐標系xOy中的三個定點
(Ⅰ)若點D為□ABCD的第四個頂點,求||;
(Ⅱ)若點P在直線OC上,且·
=4,求點P的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知單位圓x2+y2=1與x軸正半軸交于點P,當圓上一動點Q從P出發沿逆時針方向旋轉一周回到P點后停止運動設OQ掃過的扇形對應的圓心角為xrad,當0<x<2π時,設圓心O到直線PQ的距離為y,y與x的函數關系式y=f(x)是如圖所示的程序框圖中的①②兩個關系式
(Ⅰ)寫出程序框圖中①②處的函數關系式;
(Ⅱ)若輸出的y值為2,求點Q的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設y=f(t)是某港口水的深度y(米)關于時間t(小時)的函數,其中.下表是該港口某一天從0時至24時記錄的時間t與水深y的關系:
t | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y | 12 | 15.1 | 12.1 | 9.1 | 12 | 14.9 | 11.9 | 9 | 12.1 |
經長期觀察,函數y=f(t)的圖象可以近似地看成函數的圖象.⑴求
的解析式;⑵設水深不小于
米時,輪船才能進出港口。某輪船在一晝夜內要進港口靠岸辦事,然后再出港。問該輪船最多能在港口?慷嚅L時間?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法:
①分類變量A與B的隨機變量K2越大,說明“A與B有關系”的可信度越大.
②以模型y=cekx去擬合一組數據時,為了求出回歸方程,設z=lny,將其變換后得到線性方程z=0.3x+4,則c,k的值分別是e4和0.3.
③根據具有線性相關關系的兩個變量的統計數據所得的回歸直線方程為y=a+bx中,b=1, =1,
=3,
則a=1.正確的序號是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】當時,函數
的值域是_________.
【答案】[-1,2]
【解析】:f(x)=sinx+cosx=2(
sinx+
cosx)=2sin(x+
),
∵﹣≤x≤
,
∴﹣≤x+
≤
,
∴﹣≤sin(x+
)≤1,
∴函數f(x)的值域為[﹣1,2],
故答案為:[﹣1,2].
【題型】填空題
【結束】
15
【題目】若點O在內,且滿足
,設
為
的面積,
為
的面積,則
=________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com