精英家教網 > 高中數學 > 題目詳情

【題目】已知函數.

1)若函數,試討論的單調性;

2)若,,求的取值范圍.

【答案】1)答案不唯一,具體見解析(2

【解析】

1)由于函數,得出,分類討論當時,的正負,進而得出的單調性;

2)求出,令,得,設,通過導函數,可得出上的單調性和值域,再分類討論時,的單調性,再結合,恒成立,即可求出的取值范圍.

解:(1)因為,

所以,

①當時,上單調遞減.

②當時,令,則;令,則

所以單調遞增,在上單調遞減.

綜上所述,當時,上單調遞減;

時,上單調遞增,在上單調遞減.

2)因為,可知,

,得.

,則.

時,上單調遞增,

所以上的值域是,即.

時,沒有實根,且,

上單調遞減,,符合題意.

時,,

所以有唯一實根,

時,,上單調遞增,,不符合題意.

綜上,,即的取值范圍為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】[選修4-4:坐標系與參數方程]

已知曲線的極坐標方程為,以極點為直角坐標原點,以極軸為軸的正半軸建立平面直角坐標系,將曲線向左平移個單位長度,再將得到的曲線上的每一個點的橫坐標縮短為原來的,縱坐標保持不變,得到曲線

(1)求曲線的直角坐標方程;

(2)已知直線的參數方程為,(為參數),點為曲線上的動點,求點到直線距離的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】等腰直角△內接于拋物線(),其中為拋物線的頂點,,△的面積是16.

1)求拋物線的方程;

2)拋物線的焦點為,過的直線交拋物線于兩點,交軸于點,若,,證明:是一個定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某醫院為篩查某種疾病,需要檢驗血液是否為陽性,現有)份血液樣本,有以下兩種檢驗方式:(1)逐份檢驗,則需要檢驗次;(2)混合檢驗,將其中)份血液樣本分別取樣混合在一起檢驗.若檢驗結果為陰性,這份的血液全為陰性,因而這份血液樣本只要檢驗一次就夠了,如果檢驗結果為陽性,為了明確這份血液究竟哪幾份為陽性,就要對這份再逐份檢驗,此時這份血液的檢驗次數總共為次.假設在接受檢驗的血液樣本中,每份樣本的檢驗結果是陽性還是陰性都是獨立的,且每份樣本是陽性結果的概率為

(1)假設有5份血液樣本,其中只有2份樣本為陽性,若采用逐份檢驗方式,求恰好經過4次檢驗就能把陽性樣本全部檢驗出來的概率.

(2)現取其中)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數為,采用混合檢驗方式,樣本需要檢驗的總次數為

(。┰囘\用概率統計的知識,若 ,試求關于的函數關系式;

(ⅱ)若,采用混合檢驗方式可以使得樣本需要檢驗的總次數的期望值比逐份檢驗的總次數期望值更少,求的最大值.

參考數據:,,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知四棱錐PABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC60°,EF分別是BC,PC的中點.

(I)證明:AEPD

(II)ABPA2,

①求異面直線PBAD所成角的正弦值;

②求二面角EAFC的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】針對時下的抖音熱,某校團委對學生性別和喜歡抖音是否有關作了一次調查,其中被調查的男女生人數相同,男生喜歡抖音的人數占男生人數的,女生喜歡抖音的人數占女生人數,若有95%的把握認為是否喜歡抖音和性別有關則調查人數中男生可能有( )人

附表:

0.050

0.010

k

3.841

6.635

附:

A.2545B.45C.4560D.7560

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知雙曲線,,為左,右焦點,直線過右焦點,與雙曲線的右焦點交于,兩點,且點軸上方,若,則直線的斜率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若函數,求的極值;

(2)證明:.

(參考數據:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數為自然對數的底數).

(1)討論函數的單調性;

(2)當時,恒成立,求整數的最大值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视