某建筑公司要在一塊寬大的矩形地面(如圖所示)上進行開發建設,陰影部分為一公共設施建設不能開發,且要求用欄柵隔開(欄柵要求在一直線上),公共設施邊界為曲線f(x)=1-ax2(a>0)的一部分,欄柵與矩形區域的邊界交于點M、N,交曲線于點P,設P(t,f(t)).
(1)將△OMN(O為坐標原點)的面積S表示成t的函數S(t);
(2)若在t=處,S(t)取得最小值,求此時a的值及S(t)的最小值.
科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第二章第3課時練習卷(解析版) 題型:填空題
函數f(x)=在(-∞,+∞)上單調,則a的取值范圍是________.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第二章第14課時練習卷(解析版) 題型:解答題
已知函數f(x)=ax+x2-xlna(a>0,a≠1).
(1)當a>1時,求證:函數f(x)在(0,+∞)上單調遞增;
(2)若函數y=|f(x)-t|-1有三個零點,求t的值;
(3)若存在x1、x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,試求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第二章第14課時練習卷(解析版) 題型:填空題
已知函數f(x)=||x-1|-1|,若關于x的方程f(x)=m(m∈R)恰有四個互不相等的實根x1,x2,x3,x4,則x1x2x3x4的取值范圍是________.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第二章第13課時練習卷(解析版) 題型:解答題
要制作一個如圖的框架(單位:m),要求所圍成的總面積為19.5(m2),其中ABCD是一個矩形,EFCD是一個等腰梯形,梯形高h=AB,tan∠FED=
,設AB=xm,BC=ym.
(1)求y關于x的表達式;
(2)如何設計x、y的長度,才能使所用材料最少?
查看答案和解析>>
科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第二章第13課時練習卷(解析版) 題型:解答題
已知美國蘋果公司生產某款iPhone手機的年固定成本為40萬美元,每生產1萬只還需另投入16萬美元.設蘋果公司一年內共生產該款iPhone手機x萬只并全部銷售完,每萬只的銷售收入為R(x)萬美元,且R(x)=
(1)寫出年利潤W(萬美元)關于年產量x(萬只)的函數解析式;
(2)當年產量為多少萬只時,蘋果公司在該款iPhone手機的生產中所獲得的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第二章第12課時練習卷(解析版) 題型:解答題
已知函數f(x)=lnx-ax(a∈R).
(1)求函數f(x)的單調區間;
(2)當a>0時,求函數f(x)在[1,2]上的最小值.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第二章第10課時練習卷(解析版) 題型:解答題
已知關于x的二次方程x2+2mx+2m+1=0.
(1)若方程有兩根,其中一根在區間(-1,0)內,另一根在區間(1,2)內,求實數m的取值范圍;
(2)若方程兩根均在區間(0,1)內,求實數m的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com