精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在平面四邊形ABCD中, .

(1),求的大小;

(2)設△BCD的面積為S,求S的取值范圍.

【答案】(1) . (2)

【解析】

1)在ABD中,由余弦定理可求BD的值,進而在BCD中,由正弦定理可求sinCDB,求得∠CDB,即可得解∠CBD60°﹣∠CDB15°

2)設∠CBDθ,則∠CDB60°θ.在BCD中,由正弦定理可求BC4sin60°θ),利用三角形面積公式,三角函數恒等變換的應用可求S2sin2θ+30°,結合范圍θ60°,利用正弦函數的性質可求S的取值范圍.

1

中,因為

,所以.

中,因為

,得,則.

所以.

2)設,則.

中,因為,則.

所以

.

因為,則,所以.

的取值范圍是

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設函數

1)求函數的零點;

2)當時,求證:在區間上單調遞減;

3)若對任意的正實數,總存在,使得,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2018年8月8日是我國第十個全民健身日,其主題是:新時代全民健身動起來。某市為了解全民健身情況,隨機從某小區居民中抽取了40人,將他們的年齡分成7段:[10,20),[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如圖所示的頻率分布直方圖。

(1)試求這40人年齡的平均數、中位數的估計值;

(2)(i)若從樣本中年齡在[50,70)的居民中任取2人贈送健身卡,求這2人中至少有1人年齡不低于60歲的概率;

(ⅱ)已知該小區年齡在[10,80]內的總人數為2000,若18歲以上(含18歲)為成年人,試估計該小區年齡不超過80歲的成年人人數。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲、乙兩品牌計劃入駐某商場,該商場批準兩個品牌先進場試銷天。兩品牌提供的返利方案如下:甲品牌無固定返利,賣出件以內(含件)的產品,每件產品返利元,超出件的部分每件返利元;乙品牌每天固定返利元,且每賣出一件產品再返利元。經統計,兩家品牌在試銷期間的銷售件數的莖葉圖如下:

(Ⅰ)現從乙品牌試銷的天中隨機抽取天,求這天的銷售量中至少有一天低于的概率.

(Ⅱ)若將頻率視作概率,回答以下問題:

①記甲品牌的日返利額為(單位:元),求的分布列和數學期望;

②商場擬在甲、乙兩品牌中選擇一個長期銷售,如果僅從日返利額的角度考慮,請利用所學的統計學知識為商場作出選擇,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)求證:函數是偶函數;

(2)設求關于的函數時的值域的表達式;

(3)若關于的不等式時恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某貧困村共有農戶100戶,均從事水果種植,平均每戶年收入為1.8萬元,在當地政府大力扶持和引導下,村委會決定2020年初抽出戶()從事水果銷售工作,經測算,剩下從事水果種植的農戶平均每戶年收入比上一年提高了,而從事水果銷售的農戶平均每戶年收入為萬元.

1)為了使從事水果種植的農戶三年后平均每戶年收入不低于2.4萬元,那么2020年初至少應抽出多少農戶從事水果銷售工作?

2)若一年后,該村平均每戶的年收入為(萬元),問的最大值是否可以達到2.1萬元?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖1,在正方形中,的中點,點在線段上,且.若將 分別沿折起,使兩點重合于點,如圖2.

圖1 圖2

(1)求證:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知平面向量,滿足:,的夾角為,||5的夾角為,||3,則的最大值為_____

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設有二元關系,已知曲線.

1)若時,正方形的四個頂點均在曲線上,求正方形的面積;

2)設曲線軸的交點是,拋物線軸的交點是,直線與曲線交于,直線與曲線交于,求證直線過定點,并求該定點的坐標;

3)設曲線軸的交點是,,可知動點在某確定的曲線上運動,曲線上與上述曲線時共有4個交點,其坐標分別是、、,集合的所有非空子集設為,將中的所有元素相加(若只有一個元素,則和是其自身)得到255個數,求所有正整數的值,使得是一個與變數及變數均無關的常數.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视