精英家教網 > 高中數學 > 題目詳情
設函數f(x)=ax+bx-cx,其中c>a>0,c>b>0.若a,b,c是△ABC的三條邊長,則下列結論中正確的是( 。
①對一切x∈(-∞,1)都有f(x)>0;
②存在x∈R+,使xax,bx,cx不能構成一個三角形的三條邊長;
③若△ABC為鈍角三角形,則存在x∈(1,2),使f(x)=0.
A、①②B、①③C、②③D、①②③
分析:①利用指數函數的性質以a.b.c構成三角形的條件進行證明.②可以舉反例進行判斷.③利用函數零點的存在性定理進行判斷.
解答:解:①∵a,b,c是△ABC的三條邊長,∴a+b>c,
∵c>a>0,c>b>0,∴0<
a
c
<1,0<
b
c
<1,
當x∈(-∞,1)時,f(x)=ax+bx-cx=cx[(
a
c
)x
+(
b
c
)x
-1]
>cx•(
a
c
+
b
c
-1
)=cx
a+b-c
c
>0,∴①正確.
②令a=2,b=3,c=4,則a,b,c可以構成三角形,
但a2=4,b2=9,c2=16卻不能構成三角形,∴②正確.
③∵c>a>0,c>b>0,若△ABC為鈍角三角形,則a2+b2-c2<0,
∵f(1)=a+b-c>0,f(2)=a2+b2-c2<0,
∴根據根的存在性定理可知在區間(1,2)上存在零點,
即?x∈(1,2),使f(x)=0,∴③正確.
故選:D
點評:本題考查的知識點較多,考查函數零點的存在性定理,考查指數函數的性質,以及余弦定理的應用,屬中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=ax+
xx-1
(x>1),若a是從1,2,3三個數中任取一個數,b是從2,3,4,5四個數中任取一個數,求f(x)>b恒成立的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=ax+b的圖象經過點(1,7),又其反函數的圖象經過點(4,0),求函數的解析式,并求f(-2)、f(
12
)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=ax+bx-cx,其中a,b,c是△ABC的三條邊,且c>a,c>b,則“△ABC為鈍角三角形”是“?x∈(1,2),使f(x)=0”( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•楊浦區一模)(文)設函數f(x)=ax+1-2(a>1)的反函數為y=f-1(x),則f-1(-1)=
-1
-1

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網設函數f(x)=(a
x
-
1
x
)n
,其中n=3
π
sin(π+x)dx,a為如圖所示的程序框圖中輸出的結果,則f(x)的展開式中常數項是(  )
A、-
5
2
B、-160
C、160
D、20

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视