精英家教網 > 高中數學 > 題目詳情

【題目】已知圓和圓

(1)若直線過點,且被圓截得的弦長為2,求直線的方程;

(2)設為平面上的點,滿足:存在過點的無窮多對互相垂直的直線,且直線被圓截得的弦長與直線被圓截得的弦長相等,試求所有滿足條件的點的坐標.

【答案】(1);(2)

【解析】

1)因為直線過點,故可以設出直線的點斜式方程,又由直線被圓截得的弦長為,根據半弦長、半徑、弦心距滿足勾股定理,求出弦心距,即圓心到直線的距離,得到關于直線斜率的方程,解方程求出值,代入即得直線的方程;

2)與(1)相同,我們可以設出過點的直線的點斜式方程,由于兩直線斜率積為1,且直線被圓截得的弦長與直線被圓截得的弦長相等, 故我們可以得到一個關于直線斜率的方程,解方程求出值,代入即得直線的方程.

(1)由于直線與圓不相交,

所以直線的斜率存在,設直線方程為 ,

的圓心到直線的距離為

因為直線被圓截得的弦長為 ,

所以 ,

,從而

所以直線的方程為 .

(2) 設點滿足條件,

由題意分析可得直線的斜率均存在且不為0,

不妨設直線的方程為,

則直線方程為 ,

因為的半徑相等,及直線被圓截得的弦長與直線被圓截得的弦長相等,

所以圓的圓心到直線的距離和圓的圓心到直線的距離相等,

整理得

因為的取值有無窮多個,所以

解得

這樣的點只可能是點 或點 .

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某村莊對村內50名老年人、年輕人每年是否體檢的情況進行了調查,統計數據如表所示:

每年體檢

未每年體檢

合計

老年人

7

年輕人

6

合計

50

已知抽取的老年人、年輕人各25名

(Ⅰ)請完成上面的列聯表;

(Ⅱ)試運用獨立性檢驗思想方法,判斷能否有99%的把握認為每年是否體檢與年齡有關?

附:,

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】從含有兩件正品,和一件次品的3件產品中每次任取一件,連續取兩次,求取出的兩件產品中恰有一件是次品的概率.

(1)每次取出不放回;

(2)每次取出后放回.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】雙曲線 =1(a>0,b>0)的左、右焦點分別為F1、F2離心率為e.過F2的直線與雙曲線的右支交于A、B兩點,若△F1AB是以A為直角頂點的等腰直角三角形,則e2的值是(
A.1+2
B.3+2
C.4﹣2
D.5﹣2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】世界那么大,我想去看看,處在具有時尚文化代表的大學生們旅游動機強烈,旅游可支配收入日益增多,可見大學生旅游是一個巨大的市場.為了解大學生每年旅游消費支出(單位:百元)的情況,相關部門隨機抽取了某大學的名學生進行問卷調查,并把所得數據列成如下所示的頻數分布表:

組別

頻數

(Ⅰ)求所得樣本的中位數(精確到百元);

(Ⅱ)根據樣本數據,可近似地認為學生的旅游費用支出服從正態分布,若該所大學共有學生人,試估計有多少位同學旅游費用支出在元以上;

(Ⅲ)已知樣本數據中旅游費用支出在范圍內的名學生中有名女生, 名男生,現想選其中名學生回訪,記選出的男生人數為,求的分布列與數學期望.

附:若,則,

, .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】雙曲線 =1(a>0,b>0)的左、右焦點分別為F1、F2離心率為e.過F2的直線與雙曲線的右支交于A、B兩點,若△F1AB是以A為直角頂點的等腰直角三角形,則e2的值是(
A.1+2
B.3+2
C.4﹣2
D.5﹣2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,ABCD是一塊邊長為7米的正方形鐵皮,其中ATN是一半徑為6米的扇形,已經被腐蝕不能使用,其余部分完好可利用.工人師傅想在未被腐蝕部分截下一個有邊落在BC與CD上的長方形鐵皮,其中P是弧TN上一點.設,長方形的面積為S平方米.

(1)求關于的函數解析式;

(2)求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了調查喜歡看書是否與性別有關,某校調查小組就“是否喜歡看書”這個問題,在全校隨機調研了100名學生.

(1)完成下列列聯表:

喜歡看書

不喜歡看書

合計

女生

15

50

男生

25

合計

100

(2)能否在犯錯率不超過0.025的前提下認為“喜歡看書與性別有關”.

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:,其中

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在城市舊城改造中,某小區為了升級居住環境,擬在小區的閑置地中規劃一個面積為的矩形區域(如圖所示),按規劃要求:在矩形內的四周安排寬的綠化,綠化造價為200元/,中間區域地面硬化以方便后期放置各類健身器材,硬化造價為100元/.設矩形的長為.

(1)設總造價(元)表示為長度的函數;

(2)當取何值時,總造價最低,并求出最低總造價.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视