【題目】已知圓和圓
.
(1)若直線過點
,且被圓
截得的弦長為2
,求直線
的方程;
(2)設為平面上的點,滿足:存在過點
的無窮多對互相垂直的直線
和
,且直線
被圓
截得的弦長與直線
被圓
截得的弦長相等,試求所有滿足條件的點
的坐標.
【答案】(1)或
;(2)
或
【解析】
(1)因為直線過點
,故可以設出直線
的點斜式方程,又由直線被圓
截得的弦長為
,根據半弦長、半徑、弦心距滿足勾股定理,求出弦心距,即圓心到直線的距離,得到關于直線斜率的方程,解方程求出
值,代入即得直線
的方程;
(2)與(1)相同,我們可以設出過點的直線
和
的點斜式方程,由于兩直線斜率積為1,且直線
被圓
截得的弦長與直線
被圓
截得的弦長相等, 故我們可以得到一個關于直線斜率
的方程,解方程求出
值,代入即得直線
和
的方程.
(1)由于直線與圓
不相交,
所以直線的斜率存在,設直線
方程為
,
圓的圓心到直線
的距離為
,
因為直線被圓
截得的弦長為
,
所以 ,
又 ,從而
即或
所以直線的方程為或
.
(2) 設點滿足條件,
由題意分析可得直線和
的斜率均存在且不為0,
不妨設直線的方程為
,
則直線方程為
,
因為和
的半徑相等,及直線
被圓
截得的弦長與直線
被圓
截得的弦長相等,
所以圓的圓心到直線
的距離和圓
的圓心到直線
的距離相等,
即
整理得
即
或
因為的取值有無窮多個,所以
或
解得 或
這樣的點只可能是點 或點
.
科目:高中數學 來源: 題型:
【題目】某村莊對村內50名老年人、年輕人每年是否體檢的情況進行了調查,統計數據如表所示:
每年體檢 | 未每年體檢 | 合計 | |
老年人 | 7 | ||
年輕人 | 6 | ||
合計 | 50 |
已知抽取的老年人、年輕人各25名
(Ⅰ)請完成上面的列聯表;
(Ⅱ)試運用獨立性檢驗思想方法,判斷能否有99%的把握認為每年是否體檢與年齡有關?
附:,
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從含有兩件正品,
和一件次品
的3件產品中每次任取一件,連續取兩次,求取出的兩件產品中恰有一件是次品的概率.
(1)每次取出不放回;
(2)每次取出后放回.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】雙曲線 =1(a>0,b>0)的左、右焦點分別為F1、F2離心率為e.過F2的直線與雙曲線的右支交于A、B兩點,若△F1AB是以A為直角頂點的等腰直角三角形,則e2的值是( )
A.1+2
B.3+2
C.4﹣2
D.5﹣2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】世界那么大,我想去看看,處在具有時尚文化代表的大學生們旅游動機強烈,旅游可支配收入日益增多,可見大學生旅游是一個巨大的市場.為了解大學生每年旅游消費支出(單位:百元)的情況,相關部門隨機抽取了某大學的名學生進行問卷調查,并把所得數據列成如下所示的頻數分布表:
組別 | |||||
頻數 |
(Ⅰ)求所得樣本的中位數(精確到百元);
(Ⅱ)根據樣本數據,可近似地認為學生的旅游費用支出服從正態分布
,若該所大學共有學生
人,試估計有多少位同學旅游費用支出在
元以上;
(Ⅲ)已知樣本數據中旅游費用支出在范圍內的
名學生中有
名女生,
名男生,現想選其中
名學生回訪,記選出的男生人數為
,求
的分布列與數學期望.
附:若,則
,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】雙曲線 =1(a>0,b>0)的左、右焦點分別為F1、F2離心率為e.過F2的直線與雙曲線的右支交于A、B兩點,若△F1AB是以A為直角頂點的等腰直角三角形,則e2的值是( )
A.1+2
B.3+2
C.4﹣2
D.5﹣2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,ABCD是一塊邊長為7米的正方形鐵皮,其中ATN是一半徑為6米的扇形,已經被腐蝕不能使用,其余部分完好可利用.工人師傅想在未被腐蝕部分截下一個有邊落在BC與CD上的長方形鐵皮,其中P是弧TN上一點.設
,長方形
的面積為S平方米.
(1)求關于
的函數解析式;
(2)求的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了調查喜歡看書是否與性別有關,某校調查小組就“是否喜歡看書”這個問題,在全校隨機調研了100名學生.
(1)完成下列列聯表:
喜歡看書 | 不喜歡看書 | 合計 | |
女生 | 15 | 50 | |
男生 | 25 | ||
合計 | 100 |
(2)能否在犯錯率不超過0.025的前提下認為“喜歡看書與性別有關”.
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在城市舊城改造中,某小區為了升級居住環境,擬在小區的閑置地中規劃一個面積為的矩形區域(如圖所示),按規劃要求:在矩形內的四周安排
寬的綠化,綠化造價為200元/
,中間區域地面硬化以方便后期放置各類健身器材,硬化造價為100元/
.設矩形的長為
.
(1)設總造價(元)表示為長度
的函數;
(2)當取何值時,總造價最低,并求出最低總造價.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com