精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓C:過點A,兩個焦點為(-1,0),(1,0)。

(Ⅰ)求橢圓C的方程;

(Ⅱ)E,F是橢圓C上的兩個動點,如果直線AE的斜率與AF的斜率互為相反數,證明直線EF的斜率為定值,并求出這個定值。

【答案】(1)2)直線的斜率為定值

【解析】

試題(1) 由題意,設橢圓方程為,將代入即可求出,則橢圓方程可求.

(2)設直線AE方程為:,代入入

,再由點在橢圓上,根據結直線的斜率與的斜率互為相反數,結合直線的位置關系進行求解.

1)由題意,設橢圓方程為,

因為點在橢圓上,所以,解得,

所求橢圓方程為

2)設直線方程為,代入

,,點在直線

,;

直線的斜率與直線的斜率互為相反數,在上式中用代替

,,

直線的斜率

所以直線的斜率為定值

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖所示,菱形ABCD與正三角形BCE的邊長均為2,它們所在的平面互相垂直,DF⊥平面ABCDDF.

1)求證:EF//平面ABCD;

2)若∠ABC=∠BCE,求二面角ABFE的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數的最大值為,其圖象相鄰兩條對稱軸之間的距離為,且的圖象關于點對稱,則下列判斷正確的是( )

A.要得到函數的圖象,只需將向右平移個單位

B.函數的圖象關于直線對稱

C.時,函數的最小值為

D.函數上單調遞增

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知橢圓的離心率,左頂點為,過點A作斜率為的直線l交橢圓C于點D,交y軸于點E.

1)求橢圓C的方程;

2)已知點P的中點,是否存在定點Q,對于任意的都有?若存在,求出點Q的坐標,若不存在,說明理由;

3)若過點O作直線l的平行線交橢圓C于點M,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知動點到定直線的距離與到定點的距離之比為.

1)求點的軌跡的方程;

2)已知點,在軸上是否存在一點,使得曲線上另有一點,滿足,且?若存在,求出所有符合條件的點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱柱中,,,為棱上的動點.

1)若的中點,求證:平面;

2)若平面平面ABC,且是否存在點,使二面角的平面角的余弦值為?若存在,求出的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,是正方形,點在以為直徑的半圓弧上(不與重合),為線段的中點,現將正方形沿折起,使得平面平面.

1)證明:平面.

2)三棱錐的體積最大時,求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1)若,求的單調區間;

2)證明:(i;

ii)對任意,恒成立.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校在一次期末數學測試中,為統計學生的考試情況,從學校的2000名學生中隨機抽取50名學生的考試成績,被測學生成績全部介于65分到145分之間(滿分150分),將統計結果按如下方式分成八組:第一組,,第二組,,第八組,如圖是按上述分組方法得到的頻率分布直方圖的一部分.

(1)求第七組的頻率,并完成頻率分布直方圖;

(2)用樣本數據估計該校的2000名學生這次考試成績的平均分(同一組中的數據用該組區間的中點值代表該組數據平均值);

(3)若從樣本成績屬于第六組和第八組的所有學生中隨機抽取2名,求他們的分差的絕對值小于10分的概率.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视