精英家教網 > 高中數學 > 題目詳情
已知函數f(x)對任意的x,y∈R,都有f(x)+f(y)=f(x+y).
(1)求f(0)的值;
(2)判斷f(x)的奇偶性;
(3)若f(1)=1,且f(x)在[0,+∞)上是增函數,求滿足不等式f(2x-x)+f(x)>4的x的取值范圍.
分析:(1)對已知條件令y=0,結合等式的性質變形整理即可得到f(0)的值;
(2)令y=-x,代入已知條件并結合f(0)=0化簡整理,即可得到f(-x)=-f(x),得f(x)是定義在R 上的奇函數;
(3)根據f(1)=1進行賦值,可算出f(4)=4.再根據條件將不等式f(2x-x)+f(x)>4整理為f(2x)>f(4),最后由函數的單調性解關于x的不等式,即可得到滿足不等式的實數x的取值范圍.
解答:解:(1)取y=0,得f(x)+f(0)=f(x+0)=f(x),
∴f(0)=0;
(2)取y=-x,得f(x)+f(-x)=f(0)=0,
∴對任意x∈R,都有f(-x)=-f(x)
由此可得,f(x)是定義在R 上的奇函數;
(3)∵f(1)=1,可得f(2)=f(1)+f(1)=2
∴f(4)=f(2)+f(2)=2+2=4
不等式f(2x-x)+f(x)>4,可化成f(2x-x+x)>f(4),即f(2x)>f(4),
∵f(x)在[0,+∞)上是增函數,
∴2x>4,解之得x>2,
即滿足不等式f(2x-x)+f(x)>4的x的取值范圍為(2,+∞).
點評:本題給出抽象函數,探討函數的奇偶性與單調性,并求關于x的不等式的解集.著重考查了函數奇偶性與單調性的綜合、賦值法求抽象函數的值等知識,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=ex,直線l的方程為y=kx+b.
(1)求過函數圖象上的任一點P(t,f(t))的切線方程;
(2)若直線l是曲線y=f(x)的切線,求證:f(x)≥kx+b對任意x∈R成立;
(3)若f(x)≥kx+b對任意x∈[0,+∞)成立,求實數k、b應滿足的條件.

查看答案和解析>>

科目:高中數學 來源: 題型:

若實數x、y、m滿足|x-m|>|y-m|,則稱x比y遠離m.
(1)若x2-1比1遠離0,求x的取值范圍;
(2)對任意兩個不相等的正數a、b,證明:a3+b3比a2b+ab2遠離2ab
ab
;
(3)已知函數f(x)的定義域D={{x|x≠
2
+
π
4
,k∈Z,x∈R}
.任取x∈D,f(x)等于sinx和cosx中遠離0的那個值.寫出函數f(x)的解析式,并指出它的基本性質(結論不要求證明).

查看答案和解析>>

科目:高中數學 來源: 題型:

若實數x、y、m滿足|x-m|<|y-m|,則稱x比y接近m.
(1)若x2-1比3接近0,求x的取值范圍;
(2)對任意兩個不相等的正數a、b,證明:a2b+ab2比a3+b3接近2ab
ab
;
(3)已知函數f(x)的定義域D{x|x≠kπ,k∈Z,x∈R}.任取x∈D,f(x)等于1+sinx和1-sinx中接近0的那個值.寫出函數f(x)的解析式,并指出它的奇偶性、最小正周期、最小值和單調性(結論不要求證明).

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
ex
ex+1

(Ⅰ)證明函數y=f(x)的圖象關于點(0,
1
2
)對稱;
(Ⅱ)設y=f-1(x)為y=f(x)的反函數,令g(x)=f-1(
x+1
x+2
),是否存在實數b
,使得任給a∈[
1
4
,
1
3
],對任意x∈(0,+∞).不等式g(x)>x-ax2
+b恒成立?若存在,求b的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•海淀區一模)已知函數f(x)=
1,x∈Q
0,x∈CRQ
,則f(f(x))=
1
1

下面三個命題中,所有真命題的序號是
①②③
①②③

①函數f(x)是偶函數;
②任取一個不為零的有理數T,f(x+T)=f(x)對x∈R恒成立;
③存在三個點A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC為等邊三角形.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视