精英家教網 > 高中數學 > 題目詳情

【題目】如果對定義在R上的函數,對任意兩個不相等的實數都有

以上函數是的所有序號為_______________.

【答案】

【解析】

不等式x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)等價為(x1﹣x2)[f(x1)﹣f(x2)]>0,即滿足條件的函數為單調遞增函數,判斷函數的單調性即可得到結論.

對于任意給定的不等實數x1,x2,不等式x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)恒成立,

不等式等價為(x1﹣x2)[f(x1)﹣f(x2)] >0恒成立,

即函數f(x)是定義在R上的增函數.

y=ex+1為增函數,滿足條件;

②y=3x﹣2(sinx﹣cosx);y′=3﹣2(cosx+sinx)=3﹣2sin(x+)>0,

函數單調遞增,滿足條件;

y=﹣x3+x+1;y′=﹣3x2+1,則函數在定義域上不單調不滿足條件;

.當x0時,函數單調遞增,當x0時,函數單調遞減,不滿足條件.

綜上滿足“H函數”的函數為,

故答案為:①

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】為了解少年兒童的肥胖是否與常喝碳酸飲料有關,現對名小學六年級學生進行了問卷調查,并得到如下列聯表.平均每天喝以上為“常喝”,體重超過為“肥胖”.

常喝

不常喝

合計

肥胖

2

不肥胖

18

合計

30

已知在全部人中隨機抽取人,抽到肥胖的學生的概率為

(1)請將上面的列聯表補充完整;

(2)是否有的把握認為肥胖與常喝碳酸飲料有關?請說明你的理由;

(3)已知常喝碳酸飲料且肥胖的學生中恰有2名女生,現從常喝碳酸飲料且肥胖的學生中隨機抽取2人參加一個有關健康飲食的電視節目,求恰好抽到一名男生和一名女生的概率.

附:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列p,則q形式的命題中,哪些命題中的pq的充分條件?

1)若四邊形的兩組對角分別相等,則這個四邊形是平行四邊形;

2)若兩個三角形的三邊成比例,則這兩個三角形相似;

3)若四邊形為菱形,則這個四邊形的對角線互相垂直;

4)若,則;

5)若,則;

6)若,為無理數,則為無理數;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了研究學生的數學核心素養與抽象能力(指標x)、推理能力(指標y)、建模能力(指標z的相關性,將它們各自量化為1、2、3三個等級,再用綜合指標w=x+y+x的值評定學生的數學核心素養,若,則數學核心素養為一級;若則數學核心素養為二級:若,則數學核心素養為三級,為了了解某校學生的數學核心素養,調查人員隨機訪問了某校10名學生,得到如下數據:

(1)在這10名學生中任取兩人,求這兩人的建棋能力指標相同條件下綜合指標值也相同的概率;

(2)在這10名學生中任取三人,其中數學核心素養等級足一級的學生人數記為X,求隨機變量X的分布列及其數學期望。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了引導居民合理用水,某市決定全面實施階梯水價.階梯水價原則上以住宅(一套住宅為一戶)的月用水量為基準定價,具體劃分標準如表:

階梯級別

第一階梯水量

第二階梯水量

第三階梯水量

月用水量范圍(單位:立方米)

從本市隨機抽取了10戶家庭,統計了同一月份的月用水量,得到如圖莖葉圖:

(1)現要在這10戶家庭中任意選取3家,求取到第二階梯水量的戶數的分布列與數學期望;

(2)用抽到的10戶家庭作為樣本估計全市的居民用水情況,從全市依次隨機抽取10戶,若抽到戶月用水量為二階的可能性最大,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

已知平面直角坐標系中,過點的直線的參數方程為為參數),以原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,直線與曲線相交于不同的兩點,.

(1)求曲線的直角坐標方程和直線的普通方程;

(2)若,求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】a,b為空間中兩條互相垂直的直線,等腰直角三角形ABC的直角邊AC所在直線與a,b都垂直,斜邊AB以直線AC為旋轉軸旋轉,若直線ABa成角為60,則ABb成角為

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數為偶函數,

1)求實數的值;

2)若時,函數的圖像恒在圖像的下方,求實數的取值范圍;

3)當時,求函數上的最小值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(Ⅰ)若,求函數的極值;

(Ⅱ)若, , ,使得),求實數的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视