【題目】已知函數.
(1)當時,求
的圖象在
處的切線方程;
(2)當時,求證:
在
上有唯一零點.
科目:高中數學 來源: 題型:
【題目】某花圃為提高某品種花苗質量,開展技術創新活動,在A,B實驗地分別用甲、乙方法培育該品種花苗.為觀測其生長情況,分別在A,B試驗地隨機抽選各50株,對每株進行綜合評分,將每株所得的綜合評分制成如圖所示的頻率分布直方圖.記綜合評分為80及以上的花苗為優質花苗.
(1)求圖中a的值,并求綜合評分的中位數;
(2)用樣本估計總體,以頻率作為概率,若在A,B兩塊實驗地隨機抽取3棵花苗,求所抽取的花苗中的優質花苗數的分布列和數學期望;
(3)填寫下面的列聯表,并判斷是否有90%的把握認為優質花苗與培育方法有關.
優質花苗 | 非優質花苗 | 合計 | |
甲培育法 | 20 | ||
乙培育法 | 10 | ||
合計 |
附:下面的臨界值表僅供參考.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中
.)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓與過其右焦點F(1,0)的直線交于不同的兩點A,B,線段AB的中點為D,且直線l與直線OD的斜率之積為
.
(1)求C的方程;
(2)設橢圓的左頂點為M,kMA,kMB分別表示直線MA,MB的斜率,求證.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某高中為了了解高三學生每天自主參加體育鍛煉的情況,隨機抽取了100名學生進行調查,其中女生有55名.下面是根據調查結果繪制的學生自主參加體育鍛煉時間的頻率分布直方圖:
將每天自主參加體育鍛煉時間不低于40分鐘的學生稱為體育健康類學生,已知體育健康
類學生中有10名女生.
(1)根據已知條件完成下面列聯表,并據此資料你是否有
的把握認為達到體育健康
類學生與性別有關?
非體育健康 | 體育健康 | 合計 | |
男生 | |||
女生 | |||
合計 |
(2)將每天自主參加體育鍛煉時間不低于50分鐘的學生稱為體育健康類學生,已知體育健康
類學生中有2名女生,若從體育健康
類學生中任意選取2人,求至少有1名女生的概率.
附:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業通過調查問卷(滿分50分)的形式對本企業900名員工的工作滿意程度進行調查,并隨機抽取了其中30名員工(16名女工,14名男工)的得分,如下表:
女 | 47 | 36 | 32 | 48 | 34 | 44 | 43 | 47 | 46 | 41 | 43 | 42 | 50 | 43 | 35 | 49 |
男 | 37 | 35 | 34 | 43 | 46 | 36 | 38 | 40 | 39 | 32 | 48 | 33 | 40 | 34 |
(1)根據以上數據,估計該企業得分大于45分的員工人數;
(2)現用計算器求得這30名員工的平均得分為40.5分,若規定大于平局得分為 “滿意”,否則為 “不滿意”,請完成下列表格:
“滿意”的人數 | “不滿意”的人數 | 合計 | |
女員工 | 16 | ||
男員工 | 14 | ||
合計 | 30 |
(3)根據上述表中數據,利用獨立性檢驗的方法判斷,能否在犯錯誤的概率不超過1%的前提下,認為該企業員工“性別”與“工作是否滿意”有關?
參考數據:
P(K2 | 0.10 | 0.050 | 0.025 | 0.010 | 0.001 |
K | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l的參數方程為為參數), 橢圓C的參數方程為
為參數)。在平面直角坐標系中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,點A的極坐標為(2,
(1)求橢圓C的直角坐標方程和點A在直角坐標系下的坐標
(2)直線l與橢圓C交于P,Q兩點,求△APQ的面積
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在R上的函數滿足以下三個條件:①對于任意的
,都有
;②對于任意的
都有
③函數
的圖象關于y軸對稱,則下列結論中正確的是( )
A. B.
C. D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com