【題目】已知函數f(x)的定義域為R,且對任意的x,y∈R有f(x+y)=f(x)+f(y)當時,
,f(1)=1
(1)求f(0),f(3)的值;
(2)判斷f(x)的單調性并證明;
(3)若f(4x-a)+f(6+2x+1)>2對任意x∈R恒成立,求實數a的取值范圍.
【答案】(1)見解析;(2)見解析;(3)
【解析】
(1)令,求解
,通過
,求解即可得出結論;(2)
在
上是增函數,通過任取
,且
,則
,且
,證明
,得到結果;(3)由
對任意
恒成立,得
恒成立,利用函數的單調性,構造函數,轉化求解即可.
(1)令x=y=0,得f(0+0)=f(0)+f(0),所以f(0)=0.
由f(1)=1,得f(2)=f(1)+f(1)=1+1=2,
f(3)=f(2)+f(1)=2+1=3.
(2)f(x)在R上是增函數,證明如下:
任取x1,x2∈R,且x1<x2,則x2-x1>0,且f(x2-x1)>0,
所以f(x2)-f(x1)=f(x2-x1+x1)-f(x1)
=f(x2-x1)+f(x1)-f(x1)=f(x2-x1)>0,
即f(x1)<f(x2),所以f(x)在R上是增函數.
(3)由f(4x-a)+f(6+2x+1)>2對任意x∈R恒成立,
得f(4x-a+6+2x+1)>f(2)恒成立.
因為f(x)在R上是增函數,所以4x-a+6+2x+1>2恒成立,
即4x+22x+4>a恒成立
令g(x)=4x+22x+4=(2x+1)2+3,
因為2x>0,所以g(x)>4
故a≤4
科目:高中數學 來源: 題型:
【題目】已知橢圓 +y2=1,A,B,C,D為橢圓上四個動點,且AC,BD相交于原點O,設A(x1 , y1),B(x2 , y2)滿足
=
.
(1)求證: +
=
;
(2)kAB+kBC的值是否為定值,若是,請求出此定值,并求出四邊形ABCD面積的最大值,否則,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(Ⅰ)求的單調區間;
(Ⅱ)求在區間
上的最小值.
【答案】(Ⅰ);(Ⅱ)
.
【解析】(Ⅰ).
令,得
.
與
的情況如上:
所以,的單調遞減區間是
,單調遞增區間是
.
(Ⅱ)當,即
時,函數
在
上單調遞增,
所以在區間
上的最小值為
.
當,即
時,
由(Ⅰ)知在
上單調遞減,在
上單調遞增,
所以在區間
上的最小值為
.
當,即
時,函數
在
上單調遞減,
所以在區間
上的最小值為
.
綜上,當時,
的最小值為
;
當時,
的最小值為
;
當時,
的最小值為
.
【題型】解答題
【結束】
19
【題目】已知拋物線的頂點在原點,焦點在坐標軸上,點
為拋物線
上一點.
(1)求的方程;
(2)若點在
上,過
作
的兩弦
與
,若
,求證: 直線
過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數是定義在
上的偶函數,且當
時,
.現已畫出函數
在
軸左側的圖象,如圖所示,并根據圖象:
(1)直接寫出函數,
的增區間;
(2)寫出函數,
的解析式;
(3)若函數,
,求函數
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)是定義域為R的偶函數,當時,f(x)=x2-2x
(1)求出函數f(x)在R上的解析式;
(2)畫出函數f(x)的圖象,并根據圖象寫出f(x)的單調區間.
(3)求使f(x)=1時的x的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解籃球愛好者小李的投籃命中率與打籃球時間之間的關系,下表記錄了小李某月1號到5號每天打籃球時間x單位:小時)與當天投籃命中率y之間的關系:
時間x | 1 | 2 | 3 | 4 | 5 |
命中率y | 0.4 | 0.5 | 0.6 | 0.6 | 0.4 |
(1)求小李這5天的平均投籃命中率;
(2)用線性回歸分析的方法,預測小李該月6號打6小時籃球的投籃命中率. .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在多面體中,底面
為正方形,四邊形
是矩形,平面
平面
.
(1)求證:平面平面
;
(2)若過直線的一個平面與線段
和
分別相交于點
和
(點
與點
均不重合),求證:
;
(3)判斷線段上是否存在一點
,使得平面
平面
?若存在,求
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左右焦點分別為
,上頂點為
,若直線
的斜率為1,且與橢圓的另一個交點為
,
的周長為
.
(1)求橢圓的標準方程;
(2)過點的直線
(直線
的斜率不為1)與橢圓交于
兩點,點
在點
的上方,若
,求直線
的斜率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com