精英家教網 > 高中數學 > 題目詳情

【題目】如圖,四棱錐P﹣ABCD中,AD⊥平面PAB,AP⊥AB.
(1)求證:CD⊥AP;
(2)若CD⊥PD,求證:CD∥平面PAB.

【答案】
(1)證明:因為AD⊥平面PAB,AP平面PAB,所以AD⊥AP.

又因為AP⊥AB,AB∩AD=A,AB平面ABCD,AD平面ABCD,

所以AP⊥平面ABCD.

因為CD平面ABCD,所以CD⊥AP


(2)證明:因為CD⊥AP,CD⊥PD,且PD∩AP=P,PD平面PAD,AP平面PAD,

所以CD⊥平面PAD.①

因為AD⊥平面PAB,AB平面PAB,所以AB⊥AD.

又因為AP⊥AB,AP∩AD=A,AP平面PAD,AD平面PAD,

所以AB⊥平面PAD.②

由①②得CD∥AB,

因為CD平面PAB,AB平面PAB,所以CD∥平面PAB


【解析】(1)推導出AD⊥AP,AP⊥AB,從而AP⊥平面ABCD,由此能證明CD⊥AP.(2)由CD⊥AP,CD⊥PD,得CD⊥平面PAD.再推導出AB⊥AD,AP⊥AB,從而AB⊥平面PAD,進而CD∥AB,由此能證明CD∥平面PAB.
【考點精析】解答此題的關鍵在于理解直線與平面平行的判定的相關知識,掌握平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】經銷商經銷某種農產品,在一個銷售季度內,每售出1t該產品獲利潤500元,未售出的產品,每1t虧損300元.根據歷史資料,得到銷售季度內市場需求量的頻率分布直方圖,如圖所示.經銷商為下一個銷售季度購進了130t該農產品.以x(單位:t,100≤x≤150)表示下一個銷售季度內的市場需求量,T(單位:元)表示下一個銷售季度內經銷該農產品的利潤.

(1)將T表示為x的函數;
(2)根據直方圖估計利潤T不少于57000元的概率;
(3)在直方圖的需求量分組中,以各組的區間中點值代表該組的各個值,并以需求量落入該區間的頻率作為需求量取該區間中點值的概率(例如:若x∈[100,110))則取x=105,且x=105的概率等于需求量落入[100,110)的頻率,求T的數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=cosxsin2x,下列結論中錯誤的是(
A.y=f(x)的圖象關于(π,0)中心對稱
B.y=f(x)的圖象關于x= 對稱
C.f(x)的最大值為
D.f(x)既是奇函數,又是周期函數

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=lnx+(e﹣a)x﹣b,其中e為自然對數的底數.若不等式f(x)≤0恒成立,則 的最小值為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校為了解開展校園安全教育系列活動的成效,對全校學生進行了一次安全意識測試,根據測試成績評定“合格”“不合格”兩個等級同時對相應等級進行量化:“合格”記5,“不合格”記0分.現隨機抽取部分學生的答卷統計結果及對應的頻率分布直方圖如圖所示:

等級

不合格

合格

得分

[20,40)

[40,60)

[60,80)

[80,100]

頻數

6

a

24

b

(1)a,b,c的值;

(2)先用分層抽樣的方法從評定等級為“合格”和“不合格”的學生中隨機抽取10人進行座談再從這10人中任選4,記所選4人的量化總分為ξ,ξ的分布列及數學期望E(ξ);

(3)某評估機構以指標,其中表示的方差)來評估該校開展安全教育活動的成效.若0.7,則認定教育活動是有效的;否則認定教育活動無效,應調整安全教育方案.在(2)的條件下,判斷該校是否應調整安全教育方案.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】D是含數1的有限實數集,f(x)是定義在D上的函數。若f(x)的圖像繞原點逆時針旋轉后與原圖像重合,則在以下各項中,f(1)的取值只可能是( )

A. B. C. D. 0

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f (x)=ex﹣ax﹣1,其中e為自然對數的底數,a∈R.
(1)若a=e,函數g (x)=(2﹣e)x. ①求函數h(x)=f (x)﹣g (x)的單調區間;
②若函數F(x)= 的值域為R,求實數m的取值范圍;
(2)若存在實數x1 , x2∈[0,2],使得f(x1)=f(x2),且|x1﹣x2|≥1,求證:e﹣1≤a≤e2﹣e.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直四棱柱ABCD﹣A1B1C1D1中,底面四邊形ABCD為菱形,A1A=AB=2,∠ABC= ,E,F分別是BC,A1C的中點.
(1)求異面直線EF,AD所成角的余弦值;
(2)點M在線段A1D上, =λ.若CM∥平面AEF,求實數λ的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】平頂山市公安局交警支隊依據《中華人民共和國道路交通安全法》第條規定:所有主干道路凡機動車途經十字口或斑馬線,無論轉彎或者直行,遇有行人過馬路,必須禮讓行人,違反者將被處以元罰款,記分的行政處罰.如表是本市一主干路段監控設備所抓拍的個月內,機動車駕駛員不“禮讓斑馬線”行為統計數據:

月份

違章駕駛員人數

(Ⅰ)請利用所給數據求違章人數與月份之間的回歸直線方程;

(Ⅱ)預測該路段月份的不“禮讓斑馬線”違章駕駛員人數.

參考公式:,

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视