【題目】已知函數f(x)= ,其中a,b,c∈R.
(1)若a=b=c=1,求f(x)的單調區間;
(2)若b=c=1,且當x≥0時,f(x)≥1恒成立,求實數a的取值范圍.
【答案】
(1)解:a=1,b=1,c=1,f′(x)= ,
∴0<x<1,f′(x)<0,x<0或x>1時,f′(x)>0,
∴函數的單調減區間是(0,1),單調增區間是(﹣∞,0),(1,+∞)
(2)解:若b=c=1,且當x≥0時,f(x)≥1總成立,則a≥0.
a=0,f(x)= ,f′(x)=
≥0,
∴f(x)min=f(0)=1;
a>0,f′(x)= ,
0<a≤ ,f(x)min=f(0)=1;a≥
,f(x)在[0,
]上為減函數,
在[ ,+∞)上為增函數,
f(x)min<f(0)=1,不成立,
綜上所述,0≤a≤
【解析】(1)若a=1,b=1,c=1,求導數,利用導數的正負,求f(x)的單調區間;(2)若b=c=1,且當x≥0時,f(x)≥1總成立,先確定a≥0,在分類討論,確定函數的最小值,即可求實數a的取值范圍;
【考點精析】掌握利用導數研究函數的單調性和函數的最大(小)值與導數是解答本題的根本,需要知道一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果
,那么函數
在這個區間單調遞增;(2)如果
,那么函數
在這個區間單調遞減;求函數
在
上的最大值與最小值的步驟:(1)求函數
在
內的極值;(2)將函數
的各極值與端點處的函數值
,
比較,其中最大的是一個最大值,最小的是最小值.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx﹣mx(m∈R).
(1)若曲線y=f(x)過點P(1,﹣1),求曲線y=f(x)在點P處的切線方程;
(2)求函數f(x)在區間[1,e]上的最大值;
(3)若函數f(x)有兩個不同的零點x1 , x2 , 求證:x1x2>e2 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點列An(an , bn)(n∈N*)均為函數y=ax(a>0,a≠1)的圖象上,點列Bn(n,0)滿足|AnBn|=|AnBn+1|,若數列{bn}中任意連續三項能構成三角形的三邊,則a的取值范圍為( )
A.(0, )∪(
,+∞)
B.( ,1)∪(1,
)
C.(0, )∪(
,+∞)
D.( ,1)∪(1,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=sin2x+2 sin(x+
)cos(x﹣
)﹣cos2x﹣
.
(1)求函數f(x)的單調遞減區間;
(2)求函數f(x)在[﹣ ,
π]上的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)滿足f(x+y)=f(x)·f(y),且f(1)=.
(1)當n∈N+,求f(n)的表達式;
(2)設an=nf(n),n∈N+,求證:a1+a2+…+an<2.
【答案】(1)(2)見解析
【解析】
(1)利用f(x+y)=f(x)f(y)(x,y∈R)通過令x=n,y=1,說明{f(n)}是以f(1)=為首項,公比為
的等比數列求出
;(2)利用(1)求出an=nf(n)的表達式,利用錯位相減法求出數列的前n項和,即可說明不等式成立.
(1)解:f(n)=f[(n-1)+1]
=f(n-1)·f(1)=f(n-1).
∴當n≥2時,=
.
又f(1)=,
∴數列{f(n)}是首項為,公比為
的等比數列,
∴f(n)=f(1)·()n-1=(
)n.
(2)證明:由(1)可知,
an=n·()n=n·
,
設Sn=a1+a2+…+an,
則Sn=+2×
+3×
+…+(n-1)·
+n·
,①
∴Sn=
+2×
+…+(n-2)·
+(n-1)·
+n·
.②
①-②得,
Sn=
+
+
+…+
-n·
=-
=1-
-
,
∴Sn=2--
<2.
即a1+a2+…+an<2.
【點睛】
本題考查數列與函數的關系,數列通項公式的求法和的求法,考查不等式的證明,裂項法與錯位相減法的應用,數列通項的求法中有常見的已知和
的關系,求
表達式,一般是寫出
做差得通項,但是這種方法需要檢驗n=1時通項公式是否適用;數列求和常用法有:錯位相減,裂項求和,分組求和等.
【題型】解答題
【結束】
22
【題目】設數列{an}的前n項和為Sn.已知a1=a (a≠3),an+1=Sn+3n,n∈N+.
(1)設bn=Sn-3n,求數列{bn}的通項公式;
(2)若an+1≥an,n∈N+,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}的前n項和為Sn , 且S3=9,a2a4=21,數列{bn}滿足 ,若
,則n的最小值為( )
A.6
B.7
C.8
D.9
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“過大年,吃水餃”是我國不少地方過春節的一大習俗,2018年春節前夕, 市某質檢部門隨機抽取了100包某種品牌的速凍水餃,檢測其某項質量指標.
(1)求所抽取的100包速凍水餃該項質量指標值的樣本平均數(同一組中的數據用該組區間的中點值作代表);
(2)①由直方圖可以認為,速凍水餃的該項質量指標值服從正態分布
,利用該正態分布,求
落在
內的概率;
②將頻率視為概率,若某人從某超市購買了4包這種品牌的速凍水餃,記這4包速凍水餃中這種質量指標值位于內的包數為
,求
的分布列和數學期望.
附:①計算得所抽查的這100包速凍水餃的質量指標的標準差為;
②若,則
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,直線l的參數方程為(t為參數),以原點O為極點,x軸正半軸為極軸,建立極坐標系.曲線C的極坐標方程為ρ=2
cosθ.
(1)求直線l的普通方程與曲線C的直角坐標方程。
(2)求出直線l與曲線C相交后的弦長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,以
為極點,
軸正半軸為極軸建立極坐標系,圓
的極坐標方程為
,直線
的參數方程為
為參數),直線
和圓
交于
兩點,
是圓
上不同于
的任意一點.
(1)求圓心的極坐標;
(2)求點到直線
的距離的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com