精英家教網 > 高中數學 > 題目詳情

【題目】已知函數

(1)討論的單調性;

(2)當有最大值,且最大值大于時,求的取值范圍.

【答案】(1)見解析;(2)

【解析】試題分析:(1)先求導數,再根據m正負討論導函數零點情況,根據對應導函數符號確定函數單調性,(2)先根據單調性確定由最大值的條件,以及最大值取法,再根據最大值大于m-2,得不等式,利用導數研究其單調性,根據單調性解不等式得的取值范圍.

試題解析:(1)的定義域為

,則上單調遞增

,則

,則

上單調遞增.在上單調遞減.

綜上,當時, 上單調遞增.

時, 上單調遞增,在上單調遞減.

(2)由(1)知當時, 上無最大值;

時, 處取得最大值.

最大值為

等價于

,則上單調遞增. .

∴當時, ;當時, .

的取值范圍是

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知雙曲線的焦點是橢圓 的頂點, 為橢圓的左焦點且橢圓經過點.

(1)求橢圓的方程;

(2)過橢圓的右頂點作斜率為)的直線交橢圓于另一點,連結并延長交橢圓于點,當的面積取得最大值時,求的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若關于x的不等式a﹣ax>ex(2x﹣1)(a>﹣1)有且僅有兩個整數解,則實數a的取值范圍為(
A.(﹣ , ]
B.(﹣1, ]
C.(﹣ ,﹣ ]
D.(﹣ ,﹣

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數是定義在上的奇函數,且.

(1)確定的解析式;

2)判斷并證明上的單調性;

3)解不等式.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知表示兩個不同的平面, 表示兩條不同直線,對于下列兩個命題

①若”是“”的充分不必要條件;

②若,”是“”的充要條件.判讀正確的是(

A. ①②都是真命題 B. ①是真命題,②是假命題

C. ①是假命題,②是真命題 D. ①②都是假命題

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一個自然數若與它的“反序數”相等,這個自然數就稱為一個“魔幻數”如數“”、“”都是“魔幻數”在的元素中,去掉所有的“魔幻數”后,形成一個不含“魔幻數”的子集,中的元素共有______.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數是定義在上的偶函數,且當時, .現已畫出函數軸左側的圖象,如圖所示,并根據圖象:

(1)直接寫出函數, 的增區間;

(2)寫出函數, 的解析式;

(3)若函數 ,求函數的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線l過點A(0,4),且在兩坐標軸上的截距之和為1.

(Ⅰ)求直線l的方程;

(Ⅱ)若直線l1與直線l平行,且l1l間的距離為2,求直線l1的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓上的焦點為,離心率為

(1)求橢圓方程;

2)設過橢圓頂點,斜率為的直線交橢圓于另一點,交軸于點,且, , 成等比數列,求的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视