【題目】在正方體ABCD﹣A1B1C1D1中: (Ⅰ)求證:AC∥平面A1BC1;
(Ⅱ)求證:平面A1BC1⊥平面BB1D1D.
【答案】證明:(Ⅰ)因為AA1∥CC1 , 所以四邊形ACC1A1為平行四邊形, 所以AC∥A1C1 , 又A1C1平面A1BC1 , AC平面A1BC1 , AC∥平面A1BC1;
(Ⅱ)易知A1C1⊥B1D1 , 因為BB1⊥平面A1B1C1D1 , 所以BB1⊥A1C1
因為BB1∩B1D1=B1 , 所以A1C1⊥平面BB1D1D,
因為A1C1平面A1BC1 , 所以平面A1BC1⊥平面BB1D1D
【解析】(Ⅰ)證明四邊形ACC1A1為平行四邊形,可得AC∥A1C1 , 即可證明AC∥平面A1BC1;(Ⅱ)證明A1C1⊥平面BB1D1D,即可證明平面A1BC1⊥平面BB1D1D.
科目:高中數學 來源: 題型:
【題目】如圖,三棱柱中,
平面
,
,
是
上的動點,
.
(Ⅰ)若點是
中點,證明:平面
平面
;
(Ⅱ)判斷點到平面
的距離是否為定值?若是,求出定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學團委組織了“弘揚奧運精神,愛我中華”的知識競賽,從參加考試的學生中抽出60名學生,將其成績(均為整數)分成六段[40,50),[50,60),…,[90,100]后畫出如下部分頻率分布直方圖.觀察圖形給出的信息,回答下列問題:
(1)求第四小組的頻率,并補全這個頻率分布直方圖;
(2)估計這次考試的及格率(60分及以上為及格)和平均分;
(3)從成績是[40,50)和[90,100]的學生中選兩人,求他們在同一分數段的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一直線l過直線l1:3x﹣y=3和直線l2:x﹣2y=2的交點P,且與直線l3:x﹣y+1=0垂直.
(1)求直線l的方程;
(2)若直線l與圓心在x正半軸上的半徑為 的圓C相切,求圓C的標準方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,DE∥BC,BC=2DE,CA⊥CB,CA⊥CD,CB⊥CD,F、G分別是AC、BC中點.
(1)求證:平面DFG∥平面ABE;
(2)若AC=2BC=2CD=4,求二面角E﹣AB﹣C的正切值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知矩形ABCD中,AB=2,AD=1,M為CD的中點.如圖將△ADM沿AM折起,使得平面ADM⊥平面ABCM.
(1)求證:BM⊥平面ADM;
(2)若點E是線段DB上的中點,求三棱錐E﹣ABM的體積V1與四棱錐D﹣ABCM的體積V2之比.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面四邊形ABCD中,AD=1,CD=2,AC= .
(Ⅰ)求cos∠CAD的值;
(Ⅱ)若cos∠BAD=﹣ ,sin∠CBA=
,求BC的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=ax﹣(k﹣1)a﹣x(a>0且a≠1)是定義域為R的奇函數.
(1)求k值;
(2)若f(1)= ,且g(x)=a2x+a﹣2x﹣2mf(x)在[1,+∞)上的最小值為﹣2,求m的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若把函數y=sin(ωx﹣ )的圖象向左平移
個單位,所得到的圖象與函數y=cosωx的圖象重合,則ω的一個可能取值是( )
A.2
B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com