【題目】如圖,在四棱錐中,
,
,
,
,過點
作平面
的垂線,垂足為
與
的交點
,
是線段
的中點.
(1)求證:DE//平面;
(2)若四棱錐的體積為
,求直線
與平面
所成角的正弦值.
【答案】(1)見解析;(2).
【解析】
(1)取的中點
,根據中位線定理可知
且
,根據題意可得
且
,進一步可知
,然后根據線面平行的判定定理,可得結果.
(2)根據四棱錐的體積,可得
,通過建立空間直角坐標系,求得
,并得到平面
的一個法向量,然后簡單計算,可得結果.
證明:(1)取的中點
,分別連接
,
如圖
因為是
的中點,
是
的中點,
所以是
的中位線,
所以且
.
在平面內
,
知,
,
又,
,所以
//
,且
.
所以四邊形是平行四邊形,
所以,又
平面
,
平面
,
所以平面
;
(2)以點為原點,以平行于
的直線為
軸,
以平行于的直線為
軸,以直線
為
軸,
建立如下圖所示的空間直角坐標系.
設點,則
,
.
所以有點.
因為四棱錐的體積為
,
所以,解得
,則
.
又為
中點知,則點
坐標為
.
又點的坐標是
,所以
.
平面的一個法向量
.
設直線與平面
所成角為
,
則.
科目:高中數學 來源: 題型:
【題目】2019年4月10日21時整,全球六地(上海和臺北、布魯塞爾、圣地亞哥、東京和華盛頓同時召開新聞發布會,宣布人類首次利用虛擬射電望遠鏡,成功捕獲世界上首張黑洞圖像,公布的照片展示了一個中心為黑色的明亮環狀結構,看上去有點像個橙色的甜甜圈,其黑色部分是黑洞投下的“陰影”,明亮部分是繞黑洞高速旋轉的吸積盤.某同學作了一張黑洞示意圖,如圖所示,由兩個同心圓和半個同心圓環構成圓及圓環的半徑從內到外依次為2,3,4,5個單位在圖中隨機任取一點,則該點取自陰影的概率為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓錐的頂點為A,高和底面的半徑相等,BE是底面圓的一條直徑,點D為底面圓周上的一點,且∠ABD=60°,則異面直線AB與DE所成角的正弦值為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C1的參數方程為(θ為參數),以原點為極點,x軸非負半軸為極軸,建立極坐標系,曲線C2的極坐標方程為
.
(1)求曲線C1的極坐標方程以及曲線C2的直角坐標方程;
(2)若直線l:y=kx與曲線C1、曲線C2在第一象限交于P、Q,且|OQ|=|PQ|,點M的直角坐標為(1,0),求△PMQ的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐S﹣ABCD中,側面SCD為鈍角三角形且垂直于底面ABCD,CD=SD,點M是SA的中點,AD//BC,∠ABC=90°,AB=ADBC=a.
(1)求證:平面MBD⊥平面SCD;
(2)若∠SDC=120°,求三棱錐C﹣MBD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在正方體中,棱長為2,
分別為棱
的中點,
為底面正方形
內一點(含邊界)且
與面
所成角的正切值為
,直線
與面
的交點為
,當
到
的距離最小時,則四面體
外接球的表面積為___________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l的參數方程為 (t為參數),若以O為極點,x軸的正半軸為極軸且取相同的單位長度建立極坐標系,曲線C的極坐標方程為
.
(1)求曲線C的直角坐標方程及直線l的普通方程;
(2)將所得曲線C向右平移1個單位長度,再將曲線C上的所有點的橫坐標變為原來的2倍,得到曲線,求曲線
上的點到直線l的距離的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《九章算術》中“勾股容方”問題:“今有勾五步,股十二步,問勾中容方幾何?”魏晉時期數學家劉徽在其《九章算術注》中利用出入相補原理給出了這個問題的一般解法:如圖1,用對角線將長和寬分別為和
的矩形分成兩個直角三角形,每個直角三角形再分成一個內接正方形(黃)和兩個小直角三角形(朱、青).將三種顏色的圖形進行重組,得到如圖2所示的矩形.該矩形長為
,寬為內接正方形的邊長
.由劉徽構造的圖形還可以得到許多重要的結論,如圖3.設
為斜邊
的中點,作直角三角形
的內接正方形對角線
,過點
作
于點
,則下列推理正確的是( )
①由圖1和圖2面積相等得;
②由可得
;
③由可得
;
④由可得
.
A.①②③④B.①②④C.②③④D.①③
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,設點是拋物線
的焦點,直線
與拋物線
相切于點
(點
位于第一象限),并與拋物線
的準線相交于點
.過點
且與直線
垂直的直線
交拋物線
于另一點
,交
軸于點
,連結
.
(1)證明:為等腰三角形;
(2)求面積的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com