【題目】已知點、
為雙曲線
的左、右焦點,過
作垂直于
軸的直線,在
軸上方交雙曲線
于點
,且
.
(1)求雙曲線的兩條漸近線的夾角
;
(2)過點的直線
和雙曲線
的右支交于
、
兩點,求
的面積的最小值;
(3)過雙曲線上任意一點
分別作該雙曲線兩條漸近線的平行線,它們分別交兩條漸近線于
、
兩點,求平行四邊形
的面積.
【答案】(1)(2)
(3)
【解析】
(1)首先根據雙曲線的定義,結合題中所給的角的大小,求得,從而求得b的值,進而得到雙曲線的漸近線方程,利用直線的方向向量所成的角,求得兩條漸近線的夾角余弦值,利用反余弦求出結果;
(2)設出直線的方程,與雙曲線的方程聯立,利用三角形的面積公式,結合函數的單調性,求得最值,得到結果;
(3)根據所學的知識將四邊形的面積表示出來,進而求得結果.
(1)由題意,得,
,
∴,∴雙曲線
的方程為
,
∴,∴
;
(2)【注:若設點斜式,需補上斜率不存在的情況】
設,
、
,
將直線的方程代入雙曲線方程,消去
,得
,
則,得
,
,
令,
,則
,
其中在
上單調遞減,
∴在
上單調遞增,
∴當時,
取得最小值
,此時
,
的方程為
;
(3)設,其中
方法一:設,與
聯立,
可求出,
由三階行列式表示的三角形面積公式
可得
.
方法二:如圖,,
設到
和
的距離為
、
,
則,
,
∴
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率
,兩焦點分別為
,右頂點為
,
.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設過定點的直線
與雙曲線
的左支有兩個交點,與橢圓
交于
兩點,與圓
交于
兩點,若
的面積為
,
,求正數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】小王在年初用50萬元購買一輛大貨車,第一年因繳納各種費用需支出6萬元,從第二年起,每年都比上一年增加支出2萬元,假定該車每年的運輸收入均為25萬元.小王在該車運輸累計收入超過總支出后,考慮將大貨車作為二手車出售,若該車在第x年年底出售,其銷售價格為25-x萬元(國家規定大貨車的報廢年限為10年).
(1)大貨車運輸到第幾年年底,該車運輸累計收入超過總支出?
(2)在第幾年年底將大貨車出售,能使小王獲得的年平均利潤最大(利潤=累計收入+銷售收入-總支出)?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為
、
,斜率為1的直線l交橢圓于A、B兩點,且線段AB的中點坐標為
.
求橢圓的方程;
若P是橢圓與雙曲線
在第一象限的交點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,將一矩形花壇擴建成一個更大的矩形花壇
,要求
點在
上,
點在
上,且對角線
過
點,已知
米,
米.
(1)要使矩形的面積大于
平方米,則
的長應在什么范圍內?
(2)當的長度是多少時,矩形花壇
的面積最小?并求出最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】意大利數學家列昂納多·斐波那契是第一個研究了印度和阿拉伯數學理論的歐洲人,斐波那契數列被譽為是最美的數列,斐波那契數列滿足:
,
,
.若將數列的每一項按照下圖方法放進格子里,每一小格子的邊長為1,記前
項所占的格子的面積之和為
,每段螺旋線與其所在的正方形所圍成的扇形面積為
,則下列結論正確的是( )
A.B.
C.D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com