【題目】如圖,在三棱柱ABC﹣A1B1C1中,AB⊥平面BB1C1C,∠BCC1= ,AB=BB1=2,BC=1,D為CC1中點.
(1)求證:DB1⊥平面ABD;
(2)求二面角A﹣B1D﹣A1的平面角的余弦值.
【答案】
(1)證明:∵BC=B1C1=1,CD=C1D= BB1=1,∠BCC1=
,∠B1C1D=π﹣∠BCC1=
,
∴BD=1,B1D= ,
∴BB12=BD2+B1D2,∴BD⊥B1D.
∵AB⊥平面BB1C1C,BD平面BB1C1C,
∴AB⊥B1D,又AB平面ABD,BD平面ABD,AB∩BD=B,
∴DB1⊥平面ABD
(2)解:以B為原點,以BB1,BA所在直線為x軸,z軸建立空間直角坐標系B﹣xyz,如圖所示:
則A(0,0,2),D( ,
,0),B1(2,0,0),A1(2,0,2),
∴ =(
,﹣
,0),
=(﹣2,0,2),
=(0,0,2).
設平面AB1D的法向量為 =(x1,y1,z1),平面A1B1D的法向量為
=(x2,y2,z2),
則 ,
,即
,
,
令x1=1得 =(1,
,1),令x2=1得
=(1,
,0).
∴cos< ,
>=
=
=
.
∵二面角A﹣B1D﹣A1是銳角,
∴二面角A﹣B1D﹣A1的平面角的余弦值為 .
【解析】(1)利用余弦定理計算BD,B1D,再由勾股定理的逆定理得出BD⊥B1D,由AB⊥平面BB1C1C得出AB⊥B1D,于是得出B1D⊥平面ABD;(2)以B為原點建立坐標系,求出平面AB1D的法向量 ,平面A1B1D的法向量
,計算cos<
,
>即可得出二面角的余弦值.
科目:高中數學 來源: 題型:
【題目】已知△ABC的內角A,B,C的對邊分別為a,b,c,且滿足cos2B﹣cos2C﹣sin2A=sinAsimB.
(1)求角C;
(2)向量 =(sinA,cosB),
=(cosx,sinx),若函數f(x)=
的圖象關于直線x=
對稱,求角A,B.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,側面PAB⊥底面ABCD,△PAB為正三角形.AB⊥AD,CD⊥AD,點E、M為線段BC、AD的中點,F,G分別為線段PA,AE上一點,且AB=AD=2,PF=2FA.
(1)確定點G的位置,使得FG∥平面PCD;
(2)試問:直線CD上是否存在一點Q,使得平面PAB與平面PMQ所成銳二面角的大小為30°,若存在,求DQ的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點在拋物線
上,
點到拋物線
的焦點
的距離為2,直線
與拋物線交于
兩點.
(1)求拋物線的方程;
(2)若以為直徑的圓與
軸相切,求該圓的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的方程為 ,⊙C的極坐標方程為ρ=4cosθ+2sinθ.
(1)求直線l和⊙C的普通方程;
(2)若直線l與圓⊙C交于A,B兩點,求弦AB的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業為了解下屬某部門對本企業職工的服務情況,隨機訪問50名職工,根據這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數據分組區間為
(1)求頻率分布直方圖中的值;
(2)估計該企業的職工對該部門評分不低于80的概率;
(3)從評分在的受訪職工中,隨機抽取2人,求此2人評分都在
的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設,
分別為雙曲線
的左、右焦點,
為雙曲線的左頂點,以
,
為直徑的圓交雙曲線某條漸近線于
,
兩點,且滿足
,則該雙曲線的離心率為________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com