【題目】為了響應國家號召,促進垃圾分類,某校組織了高三年級學生參與了“垃圾分類,從我做起”的知識問卷作答隨機抽出男女各20名同學的問卷進行打分,作出如圖所示的莖葉圖,成績大于70分的為“合格”.
(Ⅰ)由以上數據繪制成2×2聯表,是否有95%以上的把握認為“性別”與“問卷結果”有關?
男 | 女 | 總計 | |
合格 | |||
不合格 | |||
總計 |
(Ⅱ)從上述樣本中,成績在60分以下(不含60分)的男女學生問卷中任意選2個,記來自男生的個數為,求
的分布列及數學期望.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,橢圓
的左、右焦點分別為
、
,
為橢圓短軸端點,若
為直角三角形且周長為
.
(1)求橢圓的方程;
(2)若直線與橢圓
交于
兩點,直線
,
斜率的乘積為
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xoy中,以坐標原點O為極點,x軸正半軸為極軸建立極坐標系。已知曲線C的極坐標方程為,過點
的直線l的參數方程為
(為參數),直線l與曲線C交于M、N兩點。
(1)寫出直線l的普通方程和曲線C的直角坐標方程:
(2)若成等比數列,求a的值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,在等腰中,
,
,
分別為
,
的中點,
為
的中點,
在線段
上,且
。將
沿
折起,使點
到
的位置(如圖2所示),且
。
(1)證明:平面
;
(2)求平面與平面
所成銳二面角的余弦值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(多選題)下列說法中,正確的命題是( )
A.已知隨機變量服從正態分布
,
,則
.
B.以模型去擬合一組數據時,為了求出回歸方程,設
,將其變換后得到線性方程
,則
,
的值分別是
和0.3.
C.已知兩個變量具有線性相關關系,其回歸直線方程為,若
,
,
,則
.
D.若樣本數據,
,…,
的方差為2,則數據
,
,…,
的方差為16.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于三次函數,給出定義:設
是函數
的導數,
是
的導數,若方程
有實數解
,則稱點
為函數
的“拐點”.經過探究發現:任何一個三次函數都有“拐點”;任何一個三次函數都有對稱中心,且“拐點”就是對稱中心.設函數
.
(1)當時,求
的值;
(2)若不等式恒成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市據實際情況主要采取以下四種扶貧方式:第一,以工代賑方式,指政府投資建設基礎設施工程,組織貧困地區群眾參加工程建設并獲得勞務報酬,第二,整村推進方式指以貧困村為具體幫扶對象,幫扶對口到村,資金安排到村,扶貧效益到戶,第三,科技扶貧方式,指組織科技人員深入貧困鄉村實地指導、技術培訓等傳授科技知識,第四,移民搬遷方式,指對目前極少數居住在生存條件惡劣、自然資源貧乏地區的特困人口,實行自愿移民,該市為了2020年更好的完成精準扶貧各項任務,2020年初在全市貧困戶(分一般貧困戶和“五特”戶兩類)中隨機抽取了5000戶就目前的主要四種扶貧方式行了問卷調查,支持每種扶貧方式的結果如表:
調查的貧困戶 | 支持以工代賑戶數 | 支持整村推進戶數 | 支持科技扶貧戶數 | 支持移民搬遷戶數 |
一般貧困戶 | 1200 | 1600 | 200 | |
五特戶(五保戶和特困戶) | 100 | 100 |
已知在被調查的5000戶中隨機抽取一戶支持整村推進的概率為0.36.
(Ⅰ)現用分層抽樣的方法在所有參與調查的貧困戶中抽取50戶進行深入訪談,問應在支持科技扶貧戶數中抽取多少戶?
(Ⅱ)雖然“五特”戶在全市的貧困戶所占比例不大,但本次調查要有意義,其中這次調查的“五特”戶戶數不能低于被調查總戶數的9.2%,已知,求本次調查有意義的概率是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年上半年我國多個省市暴發了“非洲豬瘟”疫情,生豬大量病死,存欄量急劇下降,一時間豬肉價格暴漲,其他肉類價格也跟著大幅上揚,嚴重影響了居民的生活.為了解決這個問題,我國政府一方面鼓勵有條件的企業和散戶防控疫情,擴大生產;另一方面積極向多個國家開放豬肉進口,擴大肉源,確保市場供給穩定.某大型生豬生產企業分析當前市場形勢,決定響應政府號召,擴大生產決策層調閱了該企業過去生產相關數據,就“一天中一頭豬的平均成本與生豬存欄數量之間的關系”進行研究.現相關數據統計如下表:
生豬存欄數量 | 2 | 3 | 4 | 5 | 8 |
頭豬每天平均成本 | 3.2 | 2.4 | 2 | 1.9 | 1.5 |
(1)研究員甲根據以上數據認為與
具有線性回歸關系,請幫他求出
關于
的線.性回歸方程
(保留小數點后兩位有效數字)
(2)研究員乙根據以上數據得出與
的回歸模型:
.為了評價兩種模型的擬合效果,請完成以下任務:
①完成下表(計算結果精確到0.01元)(備注:稱為相應于點
的殘差);
生豬存欄數量 | 2 | 3 | 4 | 5 | 8 | |
頭豬每天平均成本 | 3.2 | 2.4 | 2 | 1.9 | 1.5 | |
模型甲 | 估計值 | |||||
殘差 | ||||||
模型乙 | 估計值 | 3.2 | 2.4 | 2 | 1.76 | 1.4 |
殘差 | 0 | 0 | 0 | 0.14 | 0.1 |
②分別計算模型甲與模型乙的殘差平方和及
,并通過比較
的大小,判斷哪個模型擬合效果更好.
(3)根據市場調查,生豬存欄數量達到1萬頭時,飼養一頭豬每一天的平均收入為7.5元;生豬存欄數量達到1.2萬頭時,飼養一頭豬每一天的平均收入為7.2元若按(2)中擬合效果較好的模型計算一天中一頭豬的平均成本,問該生豬存欄數量選擇1萬頭還是1.2萬頭能獲得更多利潤?請說明理由.(利潤=收入-成本)
參考公式:.
參考數據:.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com