【題目】已知圓:
(
),設
為圓
與
軸負半軸的交點,過點
作圓
的弦
,并使弦
的中點恰好落在
軸上.
(Ⅰ)求點的軌跡
的方程;
(Ⅱ)延長交曲線
于點
,曲線
在點
處的切線與直線
交于點
,試判斷以點
為圓心,線段
長為半徑的圓與直線
的位置關系,并證明你的結論.
科目:高中數學 來源: 題型:
【題目】某校高三年級共有學生195人,其中女生105人,男生90人.現采用按性別分層抽樣的方法,從中抽取13人進行問卷調查.設其中某項問題的選擇分別為“同意”、“不同意”兩種,且每人都做了一種選擇.下面表格中提供了被調查人答卷情況的部分信息.
同意 | 不同意 | 合計 | |
女學生 | 4 | ||
男學生 | 2 |
(Ⅰ)完成上述統計表;
(Ⅱ)根據上表的數據估計高三年級學生該項問題選擇“同意”的人數;
(Ⅲ) 從被抽取的女生中隨機選取2人進行訪談,求選取的2名女生中至少有一人選擇“同意”的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,以
為極點,
軸正半軸為極軸建立極坐標系,直線
的極坐標方程為
(
),
為
上一點,以
為邊作等邊三角形
,且
、
、
三點按逆時針方向排列.
(Ⅰ)當點在
上運動時,求點
運動軌跡的直角坐標方程;
(Ⅱ)若曲線:
,經過伸縮變換
得到曲線
,試判斷點
的軌跡與曲線
是否有交點,如果有,請求出交點的直角坐標,沒有則說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知,在直角坐標系
中,直線
的參數方程為
(
為參數);在以坐標原點
為極點,
軸的正半軸為極軸的極坐標系中,直線
的極坐標方程是
.
(Ⅰ)求證: ;
(Ⅱ)設點的極坐標為
,
為直線
,
的交點,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左,右焦點為
,左,右頂點為
,過點
的
直線分別交橢圓于點
.
(1)設動點,滿足
,求點
的軌跡方程;
(2)當時,求
點的坐標;
(3)設,求證:直線
過
軸上的定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖在四面體ABCD中,若截面PQMN是正方形,則在下列命題中正確的有 .(填上所有正確命題的序號)
①AC⊥BD
②AC=BD
③AC∥截面PQMN
④異面直線PM與BD所成的角為45°.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖 1,在直角梯形中,
,且
.現以
為一邊向形外作正方形
,然后沿邊
將正方形
翻折,使
平面與平面
垂直,
為
的中點,如圖 2.
(1)求證: 平面
;
(2)求證: 平面
;
(3)求點到平面
的距離.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com