.若<α<2π,則直線
+
=1必不經過( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
科目:高中數學 來源: 題型:
設M是由滿足下列兩個條件的函數構成的集合:
①議程有實根;②函數
的導數
滿足0<
<1.
(I)若,判斷方程
的根的個數;
(II)判斷(I)中的函數是否為集合M的元素;
(III)對于M中的任意函數,設x1是方程
的實根,求證:對于
定義域中任意的x2,x3,當| x2-x1|<1,且| x3-x1|<1時,有
查看答案和解析>>
科目:高中數學 來源:2012屆江蘇省泰州中學高三上學期期中考試數學 題型:解答題
(本題滿分16分)A、B是函數f(x)=+
的圖象上的任意兩點,且
=
(
),已知點M的橫坐標為
.
(Ⅰ)求證:M點的縱坐標為定值;
(Ⅱ)若Sn=f()+f(
)+…+f(
),n∈N+且n≥2,求Sn;
(Ⅲ)已知數列{an}的通項公式為. Tn為其前n項的和,若Tn<
(Sn+1+1),對一切正整數都成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源:2013屆黑龍江虎林高中高二下學期期中理科數學試卷(解析版) 題型:解答題
已知函數f(x)=alnx-x2+1.
(1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實數a和b的值;
(2)若a<0,且對任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.
【解析】第一問中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,
由已知得a-2=4,2-a=b,所以a=6,b=-4.
第二問中,利用當a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數,
不妨設0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,
∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,
即f(x1)+x1≥f(x2)+x2,結合構造函數和導數的知識來解得。
(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,
由已知得a-2=4,2-a=b,所以a=6,b=-4.
(2)當a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數,
不妨設0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,
∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,
令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數,
∵g′(x)=-2x+1=
(x>0),
∴-2x2+x+a≤0在x>0時恒成立,
∴1+8a≤0,a≤-,又a<0,
∴a的取值范圍是
查看答案和解析>>
科目:高中數學 來源:2011屆寧夏銀川一中高三第三次月考文科數學試卷 題型:填空題
若<
<0, 則(1)a+ b < a b, (2)|a|>|b|, (3)a<b, (4)
中正確的有
___________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com