【題目】在三棱錐中,
,三角形
為等邊三角形,二面角
的余弦值為
,當三棱錐
的體積最大值為
時,三棱錐
的外接球的表面積為______.
科目:高中數學 來源: 題型:
【題目】如圖兩個同心球,球心均為點,其中大球與小球的表面積之比為3:1,線段
與
是夾在兩個球體之間的內弦,其中
兩點在小球上,
兩點在大球上,兩內弦均不穿過小球內部.當四面體
的體積達到最大值時,此時異面直線
與
的夾角為
,則
( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,平面
平面ABCD,
,
,底面ABCD是邊長為2的菱形,點E,F分別為棱DC,BC的中點,點G是棱SC靠近點C的四等分點.
求證:(1)直線平面EFG;
(2)直線平面SDB.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知拋物線的焦點為
.
若點
為拋物線上異于原點的任一點,過點
作拋物線的切線交
軸于點
,證明:
.
,
是拋物線上兩點,線段
的垂直平分線交
軸于點
(
不與
軸平行),且
.過
軸上一點
作直線
軸,且
被以
為直徑的圓截得的弦長為定值,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠生產一種產品的標準長度為,只要誤差的絕對值不超過
就認為合格,工廠質檢部抽檢了某批次產品1000件,檢測其長度,繪制條形統計圖如圖:
(1)估計該批次產品長度誤差絕對值的數學期望;
(2)如果視該批次產品樣本的頻率為總體的概率,要求從工廠生產的產品中隨機抽取2件,假設其中至少有1件是標準長度產品的概率不小于0.8時,該設備符合生產要求.現有設備是否符合此要求?若不符合此要求,求出符合要求時,生產一件產品為標準長度的概率的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線的兩頂點分別為
,
為雙曲線的一個焦點,
為虛軸的一個端點,若在線段
上(不含端點)存在兩點
,使得
,則雙曲線的漸近線斜率
的平方的取值范圍是( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著時代的發展和社會的進步,“農村淘寶”發展十分迅速,促進“農產品進城”和“消費品下鄉”.“農產品進城”很好地解決了農產品與市場的對接問題,使農民收入逐步提高,生活水平得到改善,農村從事網店經營的人收入逐步提高.西鳳臍橙是四川省南充市的特產,因果實呈橢圓形、色澤橙紅、果面光滑、無核、果肉脆嫩化渣、汁多味濃,深受人們的喜愛.為此小王開網店銷售西鳳臍橙,每月月初購進西鳳臍橙,每售出1噸西鳳臍橙獲利潤800元,未售出的西鳳臍橙,每1噸虧損500元.經市場調研,根據以往的銷售統計,得到一個月內西鳳臍橙市場的需求量的頻率分布直方圖如圖所示.小王為下一個月購進了100噸西鳳臍橙,以x(單位:噸)表示下一個月內市場的需求量,y(單位:元)表示下一個月內經銷西鳳臍橙的銷售利潤.
(1)將y表示為x的函數;
(2)根據頻率分布直方圖估計小王的網店下一個月銷售利潤y不少于67000元的概率;
(3)在直方圖的需求量分組中,以各組的區間中點值代表該組的各個值,需求量落入該區間的頻率作為需求量取該區間中點值的概率,(例如:若需求量,則取
,且
的概率等于需求量落入
的頻率),求小王的網店下一個月銷售利潤y的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為
,離心率為
,
為橢圓上一動點(異于左右頂點),
面積的最大值為
.
(1)求橢圓的方程;
(2)若直線與橢圓
相交于點
兩點,問
軸上是否存在點
,使得
是以
為直角頂點的等腰直角三角形?若存在,求點
的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com