精英家教網 > 高中數學 > 題目詳情
如圖1-4-11,在Rt△ABC中,∠A=90°,MAC中點,MDBCD.求證:AB2=BD2-CD2.

圖1-4-11

思路分析:看AB2,結合已知條件想到“射影定理”,構造輔助線——作出斜邊上的高AE,再聯系“平行線等分線段定理的推論”可達到證明的目的.

證明:過點AAEBCE.?

在Rt△ABC中,由射影定理得AB2=BE·BC.?

MDBC,AEBC,?

AEMD.?

又∵AM =MC,?

ED =DC(經過三角形一邊中點平行于一邊的直線,必平分第三邊).?

又∵BE =BD-ED =BD-CD,?

∴兩邊同乘以BCBE·BC=BC(BD -CD).?

AB2=(BD +DC)(BD -CD)=BD2-CD2.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:閱讀理解

楊輝是中國南宋末年的一位杰出的數學家、數學教育家、楊輝三角是楊輝的一大重要研究成果,它的許多性質與組合數的性質有關,楊輝三角中蘊藏了許多優美的規律.如圖是一個11階楊輝三角:
(1)求第20行中從左到右的第4個數;
(2)若第n行中從左到右第14與第15個數的比為
2
3
,求n的值;
(3)求n階(包括0階)楊輝三角的所有數的和;
(4)在第3斜列中,前5個數依次為1,3,6,10,15;第4斜列中,第5個數為35.顯然,1+3+6+10+15=35.事實上,一般地有這樣的結論:第m斜列中(從右上到左下)前k個數之和,一定等于第m+1斜列中第k個數.試用含有m、k(m,k∈N×)的數學公式表示上述結論,并給予證明.
第0行 1 第1斜列
第1行 1 1 第2斜列
第2行 1 2 1 第3斜列
第3行 1 3 3 1 第4斜列
第4行 1 4 6 4 1 第5斜列
第5行 1 5 10 10 5 1 第6斜列
第6行 1 6 15 20 15 6 1 第7斜列
第7行 1 7 21 35 35 21 7 1 第8斜列
第8行 1 8 28 56 70 56 28 8 1 第9斜列
第9行 1 9 36 84 126 126 84 36 9 1 第10斜列
第10行 1 10 45 120 210 252 210 120 45 10 1 第11斜列
第11行 1 11 55 165 330 462 462 330 165 55 11 1 第12斜列
11階楊輝三角

查看答案和解析>>

科目:高中數學 來源: 題型:

給出30個數:1,2,4,7,11,…,其規律是:第1個數是1,第2個數比第1個數大1,第3個數比第2個數大2,第4個數比第3個數大3,依次類推,要計算這30個數的和,現已給出了該問題的算法的程序框圖如圖1-4所示.

                   圖1-4

(1)請在圖中判斷框內①處和處理框中的②處填上合適的語句,使之能完成該題的算法功能;

(2)根據程序框圖1-4寫出程序.

查看答案和解析>>

科目:高中數學 來源:2008-2009學年上海市十四校高三(上)第一次聯考數學試卷(文科)(解析版) 題型:解答題

楊輝是中國南宋末年的一位杰出的數學家、數學教育家、楊輝三角是楊輝的一大重要研究成果,它的許多性質與組合數的性質有關,楊輝三角中蘊藏了許多優美的規律.如圖是一個11階楊輝三角:
(1)求第20行中從左到右的第4個數;
(2)若第n行中從左到右第14與第15個數的比為,求n的值;
(3)求n階(包括0階)楊輝三角的所有數的和;
(4)在第3斜列中,前5個數依次為1,3,6,10,15;第4斜列中,第5個數為35.顯然,1+3+6+10+15=35.事實上,一般地有這樣的結論:第m斜列中(從右上到左下)前k個數之和,一定等于第m+1斜列中第k個數.試用含有m、k(m,k∈N×)的數學公式表示上述結論,并給予證明.
第0行1第1斜列
第1行11第2斜列
第2行121第3斜列
第3行1331第4斜列
第4行14641第5斜列
第5行15101051第6斜列
第6行1615201561第7斜列
第7行172135352171第8斜列
第8行18285670562881第9斜列
第9行193684126126843691第10斜列
第10行1104512021025221012045101第11斜列
第11行1115516533046246233016555111第12斜列
11階楊輝三角

查看答案和解析>>

科目:高中數學 來源:2008-2009學年上海市十四校高三(上)第一次聯考數學試卷(理科)(解析版) 題型:解答題

楊輝是中國南宋末年的一位杰出的數學家、數學教育家、楊輝三角是楊輝的一大重要研究成果,它的許多性質與組合數的性質有關,楊輝三角中蘊藏了許多優美的規律.如圖是一個11階楊輝三角:
(1)求第20行中從左到右的第4個數;
(2)若第n行中從左到右第14與第15個數的比為,求n的值;
(3)求n階(包括0階)楊輝三角的所有數的和;
(4)在第3斜列中,前5個數依次為1,3,6,10,15;第4斜列中,第5個數為35.顯然,1+3+6+10+15=35.事實上,一般地有這樣的結論:第m斜列中(從右上到左下)前k個數之和,一定等于第m+1斜列中第k個數.試用含有m、k(m,k∈N×)的數學公式表示上述結論,并給予證明.
第0行1第1斜列
第1行11第2斜列
第2行121第3斜列
第3行1331第4斜列
第4行14641第5斜列
第5行15101051第6斜列
第6行1615201561第7斜列
第7行172135352171第8斜列
第8行18285670562881第9斜列
第9行193684126126843691第10斜列
第10行1104512021025221012045101第11斜列
第11行1115516533046246233016555111第12斜列
11階楊輝三角

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视