【題目】海水養殖場進行某水產品的新、舊網箱養殖方法的產量對比,收獲時各隨機抽取了100個網箱,測量各箱水產品的產量(單位:),其頻率分布直方圖如下:
(1)估計舊養殖法的箱產量低于50的概率并估計新養殖法的箱產量的平均值;
(2)填寫下面列聯表,并根據列聯表判斷是否有99%的把握認為箱產量與養殖方法有關:
箱產量 | 箱產量 | 合計 | |
舊養殖法 | |||
新養殖法 | |||
合計 |
附:,其中
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
參考數據:
科目:高中數學 來源: 題型:
【題目】已知A、B分別在射線CM、CN(不含端點C)上運動,∠MCN= π,在△ABC中,角A、B、C所對的邊分別是a、b、c.
(Ⅰ)若a、b、c依次成等差數列,且公差為2.求c的值;
(Ⅱ)若c= ,∠ABC=θ,試用θ表示△ABC的周長,并求周長的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國上是世界嚴重缺水的國家,城市缺水問題較為突出,某市政府為了鼓勵居民節約用水,計劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標準(噸),用水量不超過
的部分按平價收費,超過
的部分按議價收費,為了了解全市民月用水量的分布情況,通過抽樣,獲得了100位居民某年的月用水量(單位:噸),將數據按照
,
,…,
分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中 的值;
(Ⅱ)已知該市有80萬居民,估計全市居民中月均用水量不低于3噸的人數,并說明理由;
(Ⅲ)若該市政府希望使的居民每月的用水量不超過標準
(噸),估計
的值,并說明理由;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】坐標系與參數方程
在平面直角坐標系中,以坐標原點為極點,
軸正半軸為極軸建立極坐標系,已知直線
上兩點
的極坐標分別為
.
(1)設為線段
上的動點,求線段
取得最小值時,點
的直角坐標;
(2)求以為為直徑的圓
的參數方程,并求在(1)條件下直線
與圓
相交所得的弦長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}、{bn}都是公差為1的等差數列,其首項分別為a1、b1 , 且a1+b1=5,a1 , b1∈N* , 設cn=a ,則數列{cn}的前10項和等于( )
A.55
B.70
C.85
D.100
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設F1 , F2分別是橢圓 =1的左、右焦點.
(1)若M是該橢圓上的一點,且∠F1MF2=120°,求△F1MF2的面積;
(2)若P是該橢圓上的一個動點,求 的最大值和最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法中正確的是( )
A.如果兩條直線l1與l2垂直,那么它們的斜率之積一定等于﹣1
B.“a>0,b>0”是“ +
≥2”的充分必要條件
C.命題“若x=y,則sinx=siny”的逆否命題為真命題
D.“a≠﹣5或b≠5”是“a+b≠0”的充分不必要條件
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com