精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點D是AB的中點.

(1)求證:AC⊥BC1;
(2)求證:AC1∥平面CDB1;
(3)求二面角B﹣DC﹣B1的余弦值.

【答案】
(1)證明:∵直三棱柱的底面三邊長分別為3、4、5,∴AC,BC,CC1兩兩垂直,以C為坐標原點,直線CA,CB,CC1分別為x軸、y軸、z軸建立空間直角坐標系.

C(0,0,0),A(3,0,0),B(0,4,0),C1(0,0,4),

D

,∴ ,即AC⊥BC1


(2)證明:設CB1∩C1B=E,則E(0,2,2), ,

,即DE∥AC1,∵DE平面CDB1,AC1平面CDB1

∴AC1∥平面CDB1


(3)解: = ,設平面CDB1的一個法向量為 =(x,y,z),則 ,則

可求得平面CDB1的一個法向量為 =(4,﹣3,3).

取平面CDB的一個法向量為 ,

= = =

由圖可知,二面角B﹣DC﹣B1的余弦值為


【解析】(1)直三棱柱的底面三邊長分別為3、4、5,∴AC,BC,CC1兩兩垂直,以C為坐標原點,直線CA,CB,CC1分別為x軸、y軸、z軸建立空間直角坐標系.只要證明 ,即可證明AC⊥BC1 . (2)設CB1∩C1B=E,則E(0,2,2),可得 ,即DE∥AC1 , 即可證明AC1∥平面CDB1 . (3)設平面CDB1的一個法向量為 =(x,y,z),則 ,可求得平面CDB1的一個法向量為 .取平面CDB的一個法向量為 ,利用 = 即可得出.
【考點精析】本題主要考查了直線與平面平行的判定的相關知識點,需要掌握平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】我國古代數學著作《九章算術》有如下問題:“今有蒲(水生植物名)生一日,長三尺;莞(植物名,俗稱水蔥、席子草)生一日,長一尺.蒲生日自半,莞生日自倍.問幾何日而長等?”意思是:今有蒲生長1日,長為3尺;莞生長1日,長為1尺.蒲的生長逐日減半,莞的生長逐日增加1倍.若蒲、莞長度相等,則所需的時間約為( )(結果保留一位小數.參考數據:,)( )

A. 1.3日 B. 1.5日 C. 2.6日 D. 2.8日

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知直線的參數方程為為參數),以原點為極點, 軸的正半軸為極軸建立極坐標系,圓的極坐標方程為,且直線與圓相交于不同的, 兩點.

(1)求線段垂直平分線的極坐標方程;

(2)若,求過點與圓相切的切線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在三棱柱中,側面為矩形, , 的中點, 交于點,且平面

1)證明:平面平面

2)若, 的重心為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=e1+|x| ,則使得f(x)>f(2x﹣1)成立的x的取值范圍是(
A.
B.
C.(﹣ ,
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知, 分別為等差數列和等比數列, 的前項和為.函數的導函數是,有,且是函數的零點.

(1)求的值;

(2)若數列公差為,且點,當時所有點都在指數函數的圖象上.

請你求出解析式,并證明: .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某租賃公司擁有汽車100輛.當每輛車的月租金為3000元時,可全部租出.當每輛車的月租金每增加50元時,未租出的車將會增加一輛.租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元.
(1)當每輛車的月租金定為3600元時,能租出多少輛車?
(2)當每輛車的月租金定為多少元時,租賃公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知命題p:不等式2x﹣x2<m對一切實數x恒成立,命題q:m2﹣2m﹣3≥0,如果¬p與“p∧q”同時為假命題,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AB=1,AC=2,BC= ,D,E分別是AC1和BB1的中點,則直線DE與平面BB1C1C所成的角為(

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视