精英家教網 > 高中數學 > 題目詳情

【題目】已知關于x的不等式x2﹣ax﹣2>0的解集為{x|x<﹣1或x>b}(b>﹣1).
(1)求a,b的值;
(2)當m>﹣ 時,解關于x的不等式(mx+a)(x﹣b)>0.

【答案】
(1)解:關于x的不等式x2﹣ax﹣2>0的解集為{x|x<﹣1或x>b}(b>﹣1),

∴﹣1,b是方程x2﹣ax﹣2=0的兩實數根,

,

解得a=1,b=2


(2)解:由(1)知,不等式可化為(mx+1)(x﹣2)>0,

又m>﹣ ,

當m=0時,不等式化為x﹣2>0,解得x>2;

當m>0時,不等式化為(x+ )(x﹣2)>0,解得x<﹣ ,或x>2;

當﹣ <m<0時,﹣ >2,不等式化為(x+ )(x﹣2)<0,解得2<x<﹣ ;

綜上,m>0時,不等式的解集為{x|x<﹣ ,或x>2},

m=0時,不等式的解集為{x|x>2},

<m<0時,不等式的解集為{x|2<x<﹣ }


【解析】(1)根據一元二次不等式和對應方程的關系,結合根與系數的關系,即可求出a、b的值;(2)討論m=0以及m>0,﹣ <m<0時,求出對應不等式的解集即可.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知數列{an}中,a1=5,a2=2,an=2an1+3an2 , (n≥3) (Ⅰ)證明數列{an﹣3an1}成等比數列,并求數{an}列的通項公式an;
(Ⅱ)若數列bn= (an+1+an),求數列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2.E是PB的中點.
(Ⅰ)求證:平面EAC⊥平面PBC;
(Ⅱ)若二面角P﹣AC﹣E的余弦值為 ,求直線PA與平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x2+(a+2)x+5+a,a∈R.
(Ⅰ)若方程f(x)=0有一正根和一個負根,求a的取值范圍;
(Ⅱ)當x>﹣1時,不等式f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知an=logn+1(n+2)(n∈N+),觀察下列運算:a1a2=log23log34= =2;a1a2a3a4a5a6=log23log34…log67lg78= =3;….定義使a1a2a3…ak為整數的k(k∈N+)叫做希望數,則在區間[1,2016]內所有希望數的和為(
A.1004
B.2026
C.4072
D.22016﹣2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設等比數列{an}的前項n和Sn , a2= ,且S1+ ,S2 , S3成等差數列,數列{bn}滿足bn=2n.
(1)求數列{an}的通項公式;
(2)設cn=anbn , 若對任意n∈N+ , 不等式c1+c2+…+cn λ+2Sn﹣1恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設數列的前項和為,.

1)求數列的通項公式;

(2)設,求數列的前項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某營養師要求為某個兒童預訂午餐和晚餐.已知一個單位的午餐含12個單位的碳水化合物,6個單位的蛋白質和6個單位的維生素C;一個單位的晚餐含8個單位的碳水化合物,6個單位的蛋白質和10個單位的維生素C.另外,該兒童這兩餐需要的營狀中至少含64個單位的碳水化合物和42個單位的蛋白質和54個單位的維生素C.如果一個單位的午餐、晚餐的費用分別是2.5元和4元,那么要滿足上述的營養要求,并且花費最少,應當為該兒童分別預訂多少個單位的午餐和晚餐?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓C:x2+(y﹣1)2=9,直線l:x﹣my+m﹣2=0,且直線l與圓C相交于A、B兩點. (Ⅰ)若|AB|=4 ,求直線l的傾斜角;
(Ⅱ)若點P(2,1)滿足 = ,求直線l的方程.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视