【題目】如圖,在三棱臺中,
,
分別是
,
的中點,
平面
,
是等邊三角形,
,
,
.
(1)證明: 平面
;
(2)求二面角的正弦值.
【答案】(1)見解析;(2) .
【解析】試題分析:(1)根據棱臺的性質和三角形的中位線可以得到,從而得到
平面
.在梯形
中,
(
為棱
的中點),所以
平面
,從而可以證明平面
平面
,也就能得到
平面
.(2)以
所在直線分別為
軸,
軸,
軸,建立空間直角坐標系
,通過計算平面
和平面
的法向量的夾角得到二面角
的正弦值為
.
解析:(1)證明:因為,
為棱
的中點,所以
,所以四邊形
為平行四邊形,從而
.又
平面
,
平面
,所以
平面
. 因為
是
的中位線,所以
,同理可證,
平面
.因為
,所以平面
平面
. 又
平面
,所以
平面
.
(2)以所在直線分別為
軸,
軸,
軸,建立如圖所示的空間直角坐標系
,設
,則
,則
.
設平面的一個法向量
,則
即
取,得
.
同理,設平面的一個法向量
,又
,
由,得
取
,得
.所以
,即二面角
的正弦值為
.
科目:高中數學 來源: 題型:
【題目】甲、乙兩名同學準備參加考試,在正式考試之前進行了十次模擬測試,測試成績如下:
甲:137,121,131,120,129,119,132,123,125,133
乙:110,130,147,127,146,114,126,110,144,146
(1)畫出甲、乙兩人成績的莖葉圖,求出甲同學成績的平均數和方差,并根據莖葉圖,寫出甲、乙兩位同學平均成績以及兩位同學成績的中位數的大小關系的結論;
(2)規定成績超過127為“良好”,現在老師分別從甲、乙兩人成績中各隨機選出一個,求選出成績“良好”的個數的分布列和數學期望.
(注:方差,其中
為
的平均數)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市舉行“中學生詩詞大賽”,分初賽和復賽兩個階段進行,規定:初賽成績大于90分的具有復賽資格,某校有800名學生參加了初賽,所有學生的成績均在區間內,其頻率分布直方圖如圖.
(Ⅰ)求獲得復賽資格的人數;
(Ⅱ)從初賽得分在區間的參賽者中,利用分層抽樣的方法隨機抽取
人參加學校座談交流,那么從得分在區間
與
各抽取多少人?
(Ⅲ)從(Ⅱ)抽取的人中,選出
人參加全市座談交流,設
表示得分在區間
中參加全市座談交流的人數,求
的分布列及數學期望E(X).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在R上的奇函數滿足
,且在[0,1)上單調遞減,若方程
在[0,1)上有實數根,則方程
在區間[-1,7]上所有實根之和是
A. 12 B. 14 C. 6 D. 7
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,橢圓:
的焦距與橢圓
:
的短軸長相等,且
與
的長軸長相等,這兩個橢圓在第一象限的交點為
,直線
經過
在
軸正半軸上的頂點
且與直線
(
為坐標原點)垂直,
與
的另一個交點為
,
與
交于
,
兩點.
(1)求的標準方程;
(2)求.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解今年某校高三畢業班準備報考飛行員學生的體重情況,將所得的數據整理后,畫出了頻率分布直方圖(如圖),已知圖中從左到右的前3個小組的頻率之比為1:2:3,其中第2小組的頻數為15.
(1)求該校報考飛行員的總人數;
(2)以這所學校的樣本數據來估計全省的總體數據,若從全省報考飛行員的同學中(人數很多)任選三人,設表示體重超過65公斤的學生人數,求
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】吸煙有害健康,遠離煙草,珍惜生命。據統計一小時內吸煙5支誘發腦血管病的概率為0.02,一小時內吸煙10支誘發腦血管病的概率為0.16.已知某公司職員在某一小時內吸煙5支未誘發腦血管病,則他在這一小時內還能繼吸煙5支不誘發腦血管病的概率為( )
A. B.
C.
D. 不確定
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com