【題目】某市環保部門對該市市民進行了一次垃圾分類知識的網絡問卷調查,每位市民僅有一次參加機會,通過隨機抽樣,得到參與問卷調查的100人的得分(滿分:100分)數據,統計結果如表所示:
組別 | ||||||
男 | 2 | 3 | 5 | 15 | 18 | 12 |
女 | 0 | 5 | 10 | 10 | 7 | 13 |
(1)若規定問卷得分不低于70分的市民稱為“環保關注者”,請完成答題卡中的列聯表,并判斷能否在犯錯誤概率不超過0.05的前提下,認為是否為“環保關注者”與性別有關?
(2)若問卷得分不低于80分的人稱為“環保達人”.視頻率為概率.
①在我市所有“環保達人”中,隨機抽取3人,求抽取的3人中,既有男“環保達人”又有女“環保達人”的概率;
②為了鼓勵市民關注環保,針對此次的調查制定了如下獎勵方案:“環保達人”獲得兩次抽獎活動;其他參與的市民獲得一次抽獎活動.每次抽獎獲得紅包的金額和對應的概率.如下表:
紅包金額(單位:元) | 10 | 20 |
概率 |
現某市民要參加此次問卷調查,記(單位:元)為該市民參加間卷調查獲得的紅包金額,求
的分布列及數學期望.
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)不能;(2) ①;②分布列見解析,
.
【解析】
(1)根據題目所給的數據可求2×2列聯表即可;計算K的觀測值K2,對照題目中的表格,得出統計結論.(2)由相互獨立事件的概率可得男“環保達人”又有女“環保達人”的概率:P=1﹣()3﹣(
)3
,解出X的分布列及數學期望E(X)
即可;
(1)由圖中表格可得列聯表如下:
非“環保關注者” | 是“環保關注者” | 合計 | |
男 | 10 | 45 | 55 |
女 | 15 | 30 | 45 |
合計 | 25 | 75 | 100 |
將列聯表中的數據代入公式計算得K”的觀測值
,
所以在犯錯誤的概率不超過0. 05的前提下,不能認為是否為“環保關注者”與性別有關.
(2)視頻率為概率,用戶為男“環保達人”的概率為.為女“環保達人”的概率為
,
①抽取的3名用戶中既有男“環保達人”又有女“環保達人”的概率為
;
②的取值為10,20,30,40.
,
,
,
所以的分布列為
10 | 20 | 30 | 40 | |
|
.
科目:高中數學 來源: 題型:
【題目】我國是世界上嚴重缺水的國家,某市為了制定合理的節水方案,對居民用水情況進行調查,通過抽樣,獲得某年100為居民每人的月均用水量(單位:噸),將數據按照分成9組,制成了如圖所示的頻率分布直方圖.
(1)求直方圖的的值;
(2)設該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數,說明理由.
(3)估計居民月用水量的中位數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左右頂點是雙曲線
的頂點,且橢圓
的上頂點到雙曲線
的漸近線的距離為
。
(1)求橢圓的方程;
(2)若直線與
相交于
兩點,與
相交于
兩點,且
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】目前,學案導學模式已經成為教學中不可或缺的一部分,為了了解學案的合理使用是否對學生的期末復習有著重要的影響,我校隨機抽取100名學生,對學習成績和學案使用程度進行了調查,統計數據如表所示:
已知隨機抽查這100名學生中的一名學生,抽到善于使用學案的學生概率是0.6.
參考公式:,其中
.
(1)請將上表補充完整(不用寫計算過程);
(2)試運用獨立性檢驗的思想方法有多大的把握認為學生的學習成績與對待學案的使用態度有關?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某公司為鄭州園博園生產某特許商品,該公司年固定成本為10萬元,每生產千件需另投入2 .7萬元,設該公司年內共生產該特許商品工x千件并全部銷售完;每千件的銷售收入為R(x)萬元,
且,
(I)寫出年利潤W(萬元〉關于該特許商品x(千件)的函數解析式;
〔II〕年產量為多少千件時,該公司在該特許商品的生產中所獲年利潤最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數的圖象關于直線
對稱,則正確的選項是( )
①.函數為奇函數
②.函數在
上單調遞增
③.若,則
的最小值為
④.函數的圖象向右平移
個單位長度得到函數
的圖象
A.①③B.①④C.①②③D.②③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某專營店經銷某商品,當售價不高于10元時,每天能銷售100件,當價格高于10元時,每提高1元,銷量減少3件,若該專營店每日費用支出為500元,用x表示該商品定價,y表示該專營店一天的凈收入(除去每日的費用支出后的收入).
(1)把y表示成x的函數;
(2)試確定該商品定價為多少元時,一天的凈收入最高?并求出凈收入的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數方程為
(
為參數),直線
的參數方程為
(
為參數),且直線
與曲線
交于
兩點,以直角坐標系的原點為極點,以
軸的正半軸為極軸建立極坐標系.
(1)求曲線的極坐標方程;
(2) 已知點的極坐標為
,求
的值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)若,求曲線
在點
處的切線;
(2)若函數在其定義域內為增函數,求正實數
的取值范圍;
(3)設函數,若在
上至少存在一點
,使得
成立,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com