(05年江蘇卷)(14分)
設數列{an}的前n項和為Sn,已知a1=1,a2=6,a3=11,且
其中A,B為常數.
(Ⅰ)求A與B的值;
(Ⅱ)證明數列{an}為等差數列;
(Ⅲ)證明不等式對任何正整數m、n都成立.
解析:(1)由已知,得S1=a1=1,S2=a1+a2=7,S3=a1+a2+a3=18.
由(5n-8)Sn+1-(5n+2)Sn=An+B知
解得 A=-20, B=-8。
(Ⅱ)方法1
由(1)得,(5n-8)Sn+1-(5n+2)Sn=-20n-8, ①
所以 (5n-3)Sn+2-(5n+7)Sn+1=-20n-28, ②
②-①,得, (5n-3)Sn+2-(10n-1)Sn+1+(5n+2)Sn=-20, ③
所以 (5n+2)Sn+3-(10n+9)Sn+2+(5n+7)Sn+1=-20.④
④-③,得 (5n+2)Sn+3-(15n+6)Sn+2+(15n+6)Sn+1-(5n+2)Sn=0.
因為 an+1=Sn+1-Sn
所以 (5n+2)an+3-(10n+4)an+2+(5n+2)an+1=0.
又因為 (5n+2),
所以 an+3-2an+2+an+1=0,
即 an+3-an+2=an+2-an+1, .
又 a3-a2=a2-a1=5,
所以數列為等差數列。
方法2.
由已知,S1=a1=1,
又(5n-8)Sn+1-(5n+2)Sn=-20n-8,且5n-8,
所以數列是惟一確定的。
設bn=5n-4,則數列為等差數列,前n項和Tn=
于是 (5n-8)Tn+1-(5n+2)Tn=(5n-8)
由惟一性得bn=a,即數列為等差數列。
(Ⅲ)由(Ⅱ)可知,an=1+5(n-1)=5n-4.
要證了
只要證 5amn>1+aman+2
因為 amn=5mn-4,aman=(5m-4)(5n-4)=25mn-20(m+n)+16,
故只要證 5(5mn-4)>1+25mn-20(m+n)+16+2
因為
=20m+20n-37,
所以命題得證。
科目:高中數學 來源: 題型:
(09年江蘇百校樣本分析)(10分)挑選空軍飛行學員可以說是“萬里挑一”,要想通過需過“五關”――目測、初檢、復檢、文考、政審等. 某校甲、乙、丙三個同學都順利通過了前兩關,有望成為光榮的空軍飛行學員. 根據分析,甲、乙、丙三個同學能通過復檢關的概率分別是0.5,0.6,0.75,能通過文考關的概率分別是0.6,0.5,0.4,通過政審關的概率均為1.后三關相互獨立.
(1)求甲、乙、丙三個同學中恰有一人通過復檢的概率;
(2)設通過最后三關后,能被錄取的人數為,求隨機變量
的期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
(08年莆田四中一模理) (14分)
由函數確定數列
,
,若函數
的反函數
能確定數列
,
,則稱數列
是數列
的“反數列”。
(1)若函數確定數列
的反數列為
,求
的通項公式;
(2)對(1)中,不等式
對任意的正整數
恒成立,求實數
的范圍;
(3)設,若數列
的反數列為
,
與
的公共項組成的數列為
;求數列
前
項和
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com