【題目】已知數列{an}為等比數列, 公比為
為數列{an}的前n項和.
(1)若求
;
(2)若調換的順序后能構成一個等差數列,求
的所有可能值;
(3)是否存在正常數,使得對任意正整數n,不等式
總成立?若存在,求出
的范圍,若不存在,請說明理由.
【答案】(1)17(2) (3)
【解析】試題分析:(1)先根據條件求公比,再利用等比數列求和公式求比值(2)分類討論三個數成等差情況,依次求出對應公比(3)化簡不等式得,代入n=1得
,代入n=2得
,再由
,得
試題解析:解:(1)因為所以
,
所以或
(舍去).
所以
(2)若或
成等差數列,
則,解得
或1(舍去);
若或
成等差數列,
則,解得
或1(舍去);
若成等差數列,
則,解得
(舍去).
綜上,
(3)由,可得
,
故等價于恒成立.
因為
所以
得到
當時,
不可能成立.
當時,另
,得
,解得
因為 ,所以
即當時,
,所以
不可能成立.
當時,由
,
即,所以
即當時,
不成立.
當時,
所以當時,
恒成立.
綜上,存在正常數,使得對任意正整數n,不等式
總成立,
的取值范圍為
.
科目:高中數學 來源: 題型:
【題目】2018年4月23日“世界讀書日”來臨之際,某校為了了解中學生課外閱讀情況,隨機抽取了100名學生,并獲得了他們一周課外閱讀時間(單位:小時)的數據,整理得到數據分組及頻數分布表.
(1)求的值,并作出這些數據的頻率分布直方圖;
(2)現從第3、4、5組中用分層抽樣的方法抽取6人參加!爸腥A詩詞比賽”,經過比賽后從這6人中選拔2人組成該校代表隊,求這2人來自不同組別的概率;
(3)假設每組數據組間是平均分布的,若該校希望使15%的學生的一周課外閱讀時間不低于(小時)的時間,作為評選該校“課外閱讀能手”的依據,試估計該值
,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(選修4﹣4:坐標系與參數方程)
已知曲線C1的參數方程為 (t為參數),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=2sinθ.
(1)把C1的參數方程化為極坐標方程;
(2)求C1與C2交點的極坐標(ρ≥0,0≤θ<2π)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校100名學生期中考試數學成績的頻率分布直方圖如圖所示,其中成績分組區間如下:
組號 | 第一組 | 第二組 | 第三組 | 第四組 | 第五組 |
分組 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
(1)求圖中a的值;
(2)根據頻率分布直方圖,估計這100名學生期中考試數學成績的平均分;
(3)現用分層抽樣的方法從第3、4、5組中隨機抽取6名學生,將該樣本看成一個總體,從中隨機抽取2名,求其中恰有1人的分數不低于90分的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近幾年,京津冀等地數城市指數“爆表”,尤其2015年污染最重.為了探究車流量與的濃度是否相關,現采集到北方某城市2015年12月份某星期星期一到星期日某一時間段車流量與
的數據如表:
時間 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期七 |
車流量 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 28 | 30 | 35 | 41 | 49 | 56 | 62 |
(1)由散點圖知與
具有線性相關關系,求
關于
的線性回歸方程;
(2)(。├茫1)所求的回歸方程,預測該市車流量為8萬輛時的濃度;
(ⅱ)規定:當一天內的濃度平均值在
內,空氣質量等級為優;當一天內
的濃度平均值在
內,空氣質量等級為良.為使該市某日空氣質量為優或者為良,則應控制當天車流量在多少萬輛以內?(結果以萬輛為單位,保留整數.)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本題滿分12分)甲、乙兩位學生參加數學競賽培訓,現分別從他們在培訓期間參加的若干次預賽成績中隨機抽取8次,記錄如下:
甲 82 81 79 78 95 88 93 84
乙 92 95 80 75 83 80 90 85
(1)用莖葉圖表示這兩組數據;
(2)現要從中選派一人參加數學競賽,從統計學的角度(在平均數、方差或標準差中選兩個)分析,你認為選派哪位學生參加合適?請說明理由
參考公式:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列命題:(1)存在實數x,使=
; (2)若
是銳角△
的內角,則
>
; (3)函數y=sin(
-
)是偶函數; (4)函數y=sin2
的圖象向右平移
個單位,得到y=sin(2
+
)的圖象.其中正確的命題的序號是____________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,已知拋物線C:y2=4x的焦點為F,直線l經過點F且與拋物線C相交于A、B兩點.
(1)若線段AB的中點在直線y=2上,求直線l的方程;
(2)若線段|AB|=20,求直線l的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com