精英家教網 > 高中數學 > 題目詳情

【題目】設函數f(x)= ,若f(﹣4)=f(0),f(﹣2)=﹣1.
(1)求函數f(x)的解析式;
(2)畫出函數f(x)的圖象,并指出函數的定義域、值域、單調區間.

【答案】
(1)解:由f(﹣4)=f(0),f(﹣2)=﹣1,

即有16﹣4b+c=3,4﹣2b+c=﹣1,

解得:b=4,c=3,

則f(x)=


(2)解:圖象見圖所示:

由圖象可知:函數的定義域:[﹣4,+∞);

值域:(﹣∞,3];

單調增區間:(﹣2,0),單調減區間:(﹣4,﹣2),(0,+∞).


【解析】(1)由題意可得16﹣4b+c=3,4﹣2b+c=﹣1,解方程可得b,c,進而得到f(x)的解析式;(2)由分段函數的畫法,可得f(x)的圖象,進而得到定義域、值域、單調區間.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】對于函數f(x),若存在x∈R,使f(x0)=x0成立,則稱x0為f(x)的不動點.已知函數f(x)=ax2+(b+1)x+(b﹣1)(a≠0).
(1)當a=1,b=2時,求函數f(x)的不動點;
(2)若對任意實數b,函數f(x)恒有兩個相異的不動點,求a的取值范圍;
(3)在(2)的條件下,若f(x)的兩個不動點為x1 , x2 , 且f(x1)+x2= ,求實數b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在多面體中,四邊形為等腰梯形,,,,相交于,且,矩形底面為線段上一動點,滿足.

(Ⅰ)若平面,求實數的值;

(Ⅱ)當時,銳二面角的余弦值為,求多面體的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】深圳市某校中學生籃球隊假期集訓,集訓前共有6個籃球,其中3個是新球(即沒有用過的球),3個是舊球(即至少用過一次的球).每次訓練,都從中任意取出2個球,用完后放回.
(1)設第一次訓練時取到的新球個數為ξ,求ξ的分布列和數學期望;
(2)求第二次訓練時恰好取到一個新球的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給出定義:若 m﹣ <x≤m+ (其中m為整數),則m叫做離實數x最近的整數,記作{x},即{x}=m.在此基礎上給出下列關于函數f(x)=x﹣{x}的四個命題:
①函數y=f(x)的定義域是R,值域是(﹣ , ]
②函數y=f(x)的圖象關于y軸對稱;
③數y=f(x)的圖象關于坐標原點對稱;
④函數y=f(x)在(﹣ ]上是增函數;
則其中正確命題是(填序號).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知對任意的n∈N* , 存在a,b∈R,使得1×(n2﹣12)+2×(n2﹣22)+3×(n2﹣32)+…+n(n2﹣n2)= (an2+b)
(1)求a,b的值;
(2)用數學歸納法證明上述恒等式.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四棱錐中, , 都是邊長為2的等邊三角形,設在底面的射影為

(1)證明: ;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 (常數a∈R).
(1)判斷函數f(x)的奇偶性,并證明;
(2)若f(1)=2,證明函數f(x)在(1,+∞)上是增函數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在斜三棱柱中,,平面底面,點、D分別是線段、BC的中點.

(1)求證:

(2)求證:AD//平面

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视