【題目】已知數列{an}滿足a1=0,an+1=an+2 +1
(1)求證數列{ }是等差數列,并求出an的通項公式;
(2)若bn= ,求數列的前n項的和Tn .
科目:高中數學 來源: 題型:
【題目】設頂點在原點,焦點在軸上的拋物線過點
,過
作拋物線的動弦
,
,并設它們的斜率分別為
,
.
(Ⅰ)求拋物線的方程;
(Ⅱ)若,求證:直線
的斜率為定值,并求出其值;
(III)若,求證:直線
恒過定點,并求出其坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,設橢圓的中心為原點,長軸在
軸上,上頂點為
,左,右焦點分別為
,線段
的中點分別為
,且
是面積為4的直角三角形.
(1)求該橢圓的離心率和標準方程;
(2)過做直線
交橢圓于
兩點,使
,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在極坐標系中,曲線 的極坐標方程是
,以極點為原點
,極軸為
軸正半軸(兩坐標系取相同的單位長度)的直角坐標系
中,曲線
的參數方程為:
(
為參數).
(1)求曲線 的直角坐標方程與曲線
的普通方程;
(2)將曲線 經過伸縮變換
后得到曲線
,若
分別是曲線
和曲線
上的動點,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,橢圓C: +
=1(a>b>0)的離心率是
,且過點(
,
).設點A1 , B1分別是橢圓的右頂點和上頂點,如圖所示過 點A1 , B1引橢圓C的兩條弦A1E、B1F.
(1)求橢圓C的方程;
(2)若直線A1E與B1F的斜率是互為相反數.
①求直線EF的斜率k0②設直線EF的方程為y=k0x+b(﹣1≤b≤1)設△A1EF、△B1EF的面積分別為S1和S2 , 求S1+S2的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某產品生產廠家生產一種產品,每生產這種產品
(百臺),其總成本為
萬元
,其中固定成本為42萬元,且每生產1百臺的生產成本為15萬元
總成本
固定成本
生產成本
銷售收入
萬元
滿足
,假定該產品產銷平衡
即生產的產品都能賣掉
,根據上述條件,完成下列問題:
寫出總利潤函數
的解析式
利潤
銷售收入
總成本
;
要使工廠有盈利,求產量
的范圍;
工廠生產多少臺產品時,可使盈利最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,右焦點為
,斜率為1的直線
與橢圓
交于
兩點,以
為底邊作等腰三角形,頂點為
.
(1)求橢圓的方程;
(2) 為橢圓
上任意一點,若
,求
的最大值和最小值.
(3)求的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com