精英家教網 > 高中數學 > 題目詳情

A、B兩個投資項目的利潤率分別為隨機變量X1和X2,根據市場分析,X1和X2的分布列分別為

X1
5%
10%
P
0.8
0.2
 
X2
2%
8%
12%
P
0.2
0.5
0.3
(1)在A,B兩個項目上各投資100萬元,Y1和Y2分別表示投資項目A和B所獲得的利潤,求方差V(Y1)、V(Y2);
(2)將x(0≤x≤100)萬元投資A項目,100-x萬元投資B項目,f(x)表示投資A項目所得利潤的方差與投資B項目所得利潤的方差的和.求f(x)的最小值,并指出x為何值時,f(x)取到最小值.

(1)4   12    (2) x=75時,f(x)=3為最小值

解析解:(1)由題設可知Y1和Y2的分布列分別為

Y1
5
10
P
0.8
0.2
 
Y2
2
8
12
P
0.2
0.5
0.3
E(Y1)=5×0.8+10×0.2=6,
V(Y1)=(5-6)2×0.8+(10-6)2×0.2=4;
E(Y2)=2×0.2+8×0.5+12×0.3=8,
V(Y2)=(2-8)2×0.2+(8-8)2×0.5+(12-8)2×0.3=12.
(2)f(x)=V+V
2V(Y1)+2V(Y2)
[x2+3(100-x)2]
(4x2-600x+3×1002),
當x==75時,f(x)=3為最小值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

袋中裝有黑球和白球共7個,從中任取2個球都是白球的概率為,現有甲、乙兩人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取,…,取后不放回,直到兩人中有一人取到白球時即終止,每個球在每一次被取出的機會是等可能的,用ξ表示取球終止所需要的取球次數.
(1)求袋中原有白球的個數;
(2)求隨機變量ξ的概率分布;
(3)求甲取到白球的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

“蛟龍號”從海底中帶回的某種生物,甲乙兩個生物小組分別獨立開展對該生物離開恒溫箱的成活情況進行研究,每次試驗一個生物,甲組能使生物成活的概率為,乙組能使生物成活的概率為,假定試驗后生物成活,則稱該試驗成功,如果生物不成活,則稱該次試驗是失敗的.
(1)甲小組做了三次試驗,求至少兩次試驗成功的概率;
(2)如果乙小組成功了4次才停止試驗,求乙小組第四次成功前共有三次失敗,且恰有兩次連續失敗的概率;
(3)若甲乙兩小組各進行2次試驗,設試驗成功的總次數為,求的期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

箱子里有3雙不同的手套,隨機拿出2只,記事件A表示“拿出的手套配不成對”;事件B表示“拿出的都是同一只手上的手套”.
(1)請列出所有的基本事件;
(2)分別求事件A、事件B的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

據IEC(國際電工委員會)調查顯示,小型風力發電項目投資較少,且開發前景廣闊,但受風力自然資源影響,項目投資存在一定風險.根據測算,風能風區分類標準如下:

假設投資A項目的資金為≥0)萬元,投資B項目資金為≥0)萬元,調研結果是:未來一年內,位于一類風區的A項目獲利的可能性為,虧損的可能性為;位于二類風區的B項目獲利的可能性為,虧損的可能性是,不賠不賺的可能性是.
(1)記投資A,B項目的利潤分別為,試寫出隨機變量的分布列和期望;
(2)某公司計劃用不超過萬元的資金投資于A,B項目,且公司要求對A項目的投
資不得低于B項目,根據(1)的條件和市場調研,試估計一年后兩個項目的平均利
潤之和的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

拋擲紅、藍兩顆骰子,設事件A為“藍色骰子的點數為3或6”,事件B為“兩顆骰子的點數之和大于8”.
(1)求P(A),P(B),P(AB);
(2)當已知藍色骰子的點數為3或6時,求兩顆骰子的點數之和大于8的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

觀察下面一組組合數等式:

;

…………
(1)由以上規律,請寫出第個等式并證明;
(2)隨機變量,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某飲料公司對一名員工進行測試以便確定其考評級別.公司準備了兩種不同的飲料共5杯,其顏色完全相同,并且其中3杯為A飲料,另外2杯為B飲料,公司要求此員工一一品嘗后,從5杯飲料中選出3杯A飲料.若該員工3杯都選對,則評為優秀;若3杯選對2杯,則評為良好;否則評為合格.假設此人對A和B兩種飲料沒有鑒別能力.
(1)求此人被評為優秀的概率;
(2)求此人被評為良好及以上的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

“拋階磚”是國外游樂場的典型游戲之一.參與者只須將手上的“金幣”(設“金幣”的半徑為1)拋向離身邊若干距離的階磚平面上,拋出的“金幣”若恰好落在任何一個階磚(邊長為2.1的正方形)的范圍內(不與階磚相連的線重疊),便可獲大獎.不少人被高額獎金所吸引,紛紛參與此游戲但很少有人得到獎品,請用所學的概率知識解釋這是為什么.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视