【題目】設正數x,y滿足log x+log3y=m(m∈[﹣1,1]),若不等式3ax2﹣18xy+(2a+3)y2≥(x﹣y)2有解,則實數a的取值范圍是( )
A.(1, ]
B.(1, ]
C.[ ,+∞)
D.[ ,+∞)
【答案】C
【解析】解:∵log x+log3y=m,即log3
+log3y=log3
=m, ∴
=3m , ∵m∈[﹣1,1],∴
∈[
,3].
∵3ax2﹣18xy+(2a+3)y2≥(x﹣y)2 ,
∴3a﹣18 +(2a+3)
≥1﹣2
+
,
令 =t,則2(a+1)t2﹣16t+3a﹣1≥0,
設f(t)=2(a+1)t2﹣16t+3a﹣1,
∵不等式3ax2﹣18xy+(2a+3)y2≥(x﹣y)2有解,
∴f(t)在[ ,3]上的最大值fmax(x)≥0,
(i)當a=﹣1時,f(t)=﹣16t﹣4,
∴fmax(t)=f( )=﹣
﹣4<0,不符合題意;
(ii)若a<﹣1,則f(t)開口向下,對稱軸為t= <0,
∴f(t)在[ ,3]上單調遞減,
∴fmax(t)=f( )=
﹣6<0,不符合題意;
(iii)若a>﹣1,則f(t)開口向上,對稱軸為t= >0,
①若0< ≤
,即a≥11時,f(t)在[
,3]上單調遞增,
∴fmax(t)=f(3)=21a﹣31>0,符合題意;
②若 ,即﹣1<a
時,f(t)在[
,3]上單調遞減,
∴fmax(t)=f( )=
﹣6≤
﹣6<0,不符合題意;
③若 <
<3,即
<a<11時,f(t)在[
,3]上先減后增,
∴fmax(t)=f( )或fmax(t)=f(3),
∴f( )=
﹣6≥0或f(3)=21a﹣31>0,
解得a≥ 或a≥
,又
<a<11,
∴ ≤a<11,
綜上,a的取值范圍是[ ,+∞).
故選C.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C的參數方程為 ,(α為參數),以原點O為極點,x軸的非負半軸為極軸,建立極坐標系,直線l的極坐標方程為
.
(1)求曲線C的極坐標方程;
(2)設P為曲線C上一點,Q為直線l上一點,求|PQ|的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列結論正確的是( )
A.命題“若,則
”為假命題
B.命題“若,則
”的否命題為假命題
C.命題“若,則方程
有實根”的逆命題為真命題
D.命題“若,則
”的逆否命題為真命題
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: (a>b>0)的離心率為
,左、右焦點分別為圓F1、F2 , M是C上一點,|MF1|=2,且|
||
|=2
.
(1)求橢圓C的方程;
(2)當過點P(4,1)的動直線l與橢圓C相交于不同兩點A、B時,線段AB上取點Q,且Q滿足| ||
|=|
||
|,證明點Q總在某定直線上,并求出該定直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中國“一帶一路”戰略構思提出后, 某科技企業為抓住“一帶一路”帶來的機遇, 決定開發生產一款大型電子設備, 生產這種設備的年固定成本為萬元, 每生產
臺,需另投入成本
(萬元), 當年產量不足
臺時,
(萬元); 當年產量不小于
臺時
(萬元), 若每臺設備售價為
萬元, 通過市場分析,該企業生產的電子設備能全部售完.
(1)求年利潤 (萬元)關于年產量
(臺)的函數關系式;
(2)年產量為多少臺時 ,該企業在這一電子設備的生產中所獲利潤最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ex+be﹣x﹣2asinx(a,b∈R).
(1)當a=0時,討論函數f(x)的單調區間;
(2)當b=﹣1時,若f(x)>0對任意x∈(0,π)恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以直角坐標系的原點O為極點,x軸的正半軸為極軸,且兩個坐標系取相等的長度單位,已知直線l的參數方程為 (t為參數,0<φ<π),曲線C的極坐標方程為ρcos2θ=8sinθ.
(1)求直線l的普通方程和曲線C的直角坐標方程;
(2)設直線l與曲線C相交于A、B兩點,當φ變化時,求|AB|的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2lnx+ax﹣ (a∈R)在x=2處的切線經過點(﹣4,2ln2)
(1)討論函數f(x)的單調性
(2)若不等式 恒成立,求實數m的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com