【題目】記是定義在
上且滿足如下條件的函數
組成的集合:
①對任意的,都有
;
②存在常數,使得對任意的
、
,都有
.
(1)設函數,
,判斷函數
是否屬于
?并說明理由;
(2)已知函數,求證:方程
的解至多一個;
(3)設函數,
,且
,試求實數
的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知函數的定義域為
且滿足
,當
時,
.
(1)判斷在
上的單調性并加以證明;
(2)若方程有實數根
,則稱
為函數
的一個不動點,設正數
為函數
的一個不動點,且
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某牛奶廠要將一批牛奶用汽車從所在城市甲運至城市乙,已知從城市甲到城市乙只有兩條公路,且運費由廠商承擔.若廠商恰能在約定日期(×月×日)將牛奶送到,則城市乙的銷售商一次性支付給牛奶廠20萬元;若在約定日期前送到,每提前一天銷售商將多支付給牛奶廠1萬元;若在約定日期后送到,每遲到一天銷售商將少支付給牛奶廠1萬元.為保證牛奶新鮮度,汽車只能在約定日期的前兩天出發,且只能選擇其中的一條公路運送牛奶,已知下表內的信息:
統計信息 | 在不堵車的情況下到達城市乙所需時間(天) | 在堵車的情況下到達城市乙所需時間(天) | 堵車的概率 | 運費(萬元) |
公路1 | 2 | 3 | 1.6 | |
公路2 | 1 | 4 | 0.8 |
(1)記汽車選擇公路1運送牛奶時牛奶廠獲得的毛收入為(單位:萬元),求
的分布列和數學期望
;
(2)如果你是牛奶廠的決策者,你選擇哪條公路運送牛奶有可能讓牛奶廠獲得的毛收入更多?
(注:毛收入=銷售商支付給牛奶廠的費用-運費)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在教材中,我們已研究出如下結論:平面內條直線最多可將平面分成
個部分.現探究:空間內
個平面最多可將空間分成多少個部分,
.設空間內
個平面最多可將空間分成
個部分.
(1)求的值;
(2)用數學歸納法證明此結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業生產的產品具有60個月的時效性,在時效期內,企業投入50萬元經銷該產品,為了獲得更多的利潤,企業將每月獲得利潤的10%再投入到次月的經營中,市場調研表明,該企業在經銷這個產品的第個月的利潤是
(單位:萬元),記第
個月的當月利潤率為
,例
.
(1)求第個月的當月利潤率;
(2)求該企業在經銷此產品期間,哪一個月的當月利潤率最大,并求出該月的當月利潤率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等比數列的前n項和為
,且當
時,
是
與2m的等差中項
為實數
.
(1)求m的值及數列的通項公式;
(2)令,是否存在正整數k,使得
對任意正整數n均成立?若存在,求出k的最大值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在極坐標系下,已知圓O:ρ=cosθ+sinθ和直線l:.
(1)求圓O和直線l的直角坐標方程;
(2)當θ∈(0,π)時,求直線l與圓O公共點的極坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著智能手機的發展,各種“APP”(英文單詞Application的縮寫,一般指手機軟件)應運而生.某機構欲對A市居民手機內安裝的APP的個數和用途進行調研,在使用智能手機的居民中隨機抽取100人,獲得了他們手機內安裝APP的個數,整理得到如圖所示頻率分布直方圖.
(Ⅰ)求a的值;
(Ⅱ)從被抽取安裝APP的個數不低于50的居民中,隨機抽取2人進一步調研,求這2人安裝APP的個數都低于60的概率;
(Ⅲ)假設同組中的數據用該組區間的右端點值代替,以本次被抽取的居民情況為參考,試估計A市使用智能手機的居民手機內安裝APP的平均個數在第幾組(只需寫出結論).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com