精英家教網 > 高中數學 > 題目詳情

【題目】我市為迎接一項重要的體育賽事,要完成,兩座場館的地基建造工程.某工程隊需要把600名工人分成兩組,一組完成場館的甲級標準地基2000,同時另一組完成場館的乙級標準地基3000;據測算,完成甲級標準地基每平方米的工程量為50天,完成乙級標準地基每平方米的工程量為30.

1)若工程隊分配名工人去場館,求場館地基和場館地基建造時間(單位:天)的函數解析式;

2兩個場館同時開工,該工程隊如何分配兩個場館的工人數量,可以使得工期最短.

(參考數據:,.備注:若地基面積為平方米,每平方米的工程量為/天,工人數人,則工期為.

【答案】(1);(2) 分配名工人去場館,名工人去場館.

【解析】

1)根據題意,以及備注內容,即可分別求出的解析式;

2)由(1)中所求,結合函數的單調性,要使得工期最短,只需,解方程即可求得.

1場館的面積為2000,每平方米的工程量為50/天,現有名工人,

故可得場館地基建造時間;

場館的面積為3000,平方米的工程量為30/天,現有名工人,

故可得場館地基建造時間;

綜上所述:.

2)設工期為,則,其中.

容易知是單調減函數,是單調增函數,

故當且僅當兩個場館同時完工時,工期最短.

,即可得,

解得.

故分配名工人去場館,名工人去場館工期最短.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】為了解某班學生喜愛打籃球是否與性別有關,對該班40名學生進行了問卷調查,得到了如下的列聯表:

男生

女生

總計

喜愛打籃球

19

15

34

不喜愛打籃球

1

5

6

總計

20

20

40

1)在女生的20個個體中,隨機抽取2人,記隨機變量為抽到“不喜愛籃球”的人數,求的分布列及數學期望

2)判斷能否在犯錯誤的概率不超過0.1的條件下認為喜愛籃球與性別有關?

附:,其中

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】成書于公元一世紀的我國經典數學著作《九章算術》中有這樣一道名題,就是“引葭赴岸”問題,題目是:“今有池方一丈,點生其中央,出水一尺,引葭趕岸,適馬岸齊,問水深,葭長各幾何?”題意是:有一正方形池塘,邊長為一丈(10尺),有棵蘆葦長在它的正中央,高出水面部分有1尺長,把蘆葦拉向岸邊,恰好碰到沿岸(池塘一邊的中點),則水深為__________尺,蘆葦長__________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】近年來,隨著國家綜合國力的提升和科技的進步,截至年底,中國鐵路運營里程達萬千米,這個數字比年增長了倍;高鐵運營里程突破萬千米,占世界高鐵運營里程的以上,居世界第一位.如表截取了年中國高鐵密度的發展情況(單位:千米/萬平方千米).

年份

年份代碼

高鐵密度

已知高鐵密度與年份代碼之間滿足關系式為大于的常數).

1)根據所給數據,求關于的回歸方程(精確到位);

2)利用(1)的結論,預測到哪一年,高鐵密度會超過千米/萬平方千米.

參考公式:設具有線性相關系的兩個變量的一組數據為,則回歸方程的系數:

參考數據:,,,,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知某保險公司的某險種的基本保費為(單位:元),繼續購買該險種的投保人稱為續保人,續保人本年度的保費與其上年度出險次數的關聯如下:

上年度出險次數

0

1

2

3

≥4

保費(元)

隨機調查了該險種的名續保人在一年內的出險情況,得到下表:

出險次數

0

1

2

3

≥4

頻數

280

80

24

12

4

該保險公司這種保險的賠付規定如下:

出險序次

1

2

3

4

5次及以上

賠付金額(元)

將所抽樣本的頻率視為概率.

1)求本年度續保人保費的平均值的估計值;

2)按保險合同規定,若續保人在本年度內出險次,則可獲得賠付元;依此類推,求本年度續保人所獲賠付金額的平均值的估計值;

3)續保人原定約了保險公司的銷售人員在上午之間上門簽合同,因為續保人臨時有事,外出的時間在上午之間,請問續保人在離開前見到銷售人員的概率是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,,是某景區的兩條道路(寬度忽略不計,為東西方向),Q為景區內一景點,A為道路上一游客休息區,已知(百米),Q到直線的距離分別為3(百米),(百米),現新修一條自A經過Q的有軌觀光直路并延伸至道路于點B,并在B處修建一游客休息區.

1)求有軌觀光直路的長;

2)已知在景點Q的正北方6百米的P處有一大型組合音樂噴泉,噴泉表演一次的時長為9分鐘,表演時,噴泉噴灑區域以P為圓心,r為半徑變化,且t分鐘時,(百米)(,.當噴泉表演開始時,一觀光車S(大小忽略不計)正從休息區B沿(1)中的軌道(百米/分鐘)的速度開往休息區A,問:觀光車在行駛途中是否會被噴泉噴灑到,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知橢圓C)的上頂點為,離心率為.

1)求橢圓C的方程;

2)若過點A作圓(圓在橢圓C內)的兩條切線分別與橢圓C相交于B,D兩點(B,D不同于點A),當r變化時,試問直線BD是否過某個定點?若是,求出該定點;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某土特產超市為預估2020年元旦期間游客購買土特產的情況,對2019年元旦期間的90位游客購買情況進行統計,得到如下人數分布表.

購買金額(元)

人數

10

15

20

15

20

10

1)根據以上數據完成列聯表,并判斷是否有的把握認為購買金額是否少于60元與性別有關.

不少于60

少于60

合計

40

18

合計

2)為吸引游客,該超市推出一種優惠方案,購買金額不少于60元可抽獎3次,每次中獎概率為(每次抽獎互不影響,且的值等于人數分布表中購買金額不少于60元的頻率),中獎1次減5元,中獎2次減10元,中獎3次減15.若游客甲計劃購買80元的土特產,請列出實際付款數(元)的分布列并求其數學期望.

附:參考公式和數據:,.

附表:

2.072

2.706

3.841

6.635

7.879

0.150

0.100

0.050

0.010

0.005

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】“總把新桃換舊符”(王安石)、“燈前小草寫桃符”(陸游),春節是中華民族的傳統節日,在宋代人們用寫“桃符”的方式來祈福避禍,而現代人們通過貼“!弊帧①N春聯、掛燈籠等方式來表達對新年的美好祝愿,某商家在春節前開展商品促銷活動,顧客凡購物金額滿50元,則可以從“!弊、春聯和燈籠這三類禮品中任意免費領取一件,若有4名顧客都領取一件禮品,則他們中有且僅有2人領取的禮品種類相同的概率是(

A.B.C.D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视