精英家教網 > 高中數學 > 題目詳情
已知 f(x)=cos(
π
2
-x)+
3
sin(
π
2
+x) (x∈R).
(1)求函數f(x)的最小正周期;
(2)求函數f(x)的最大值,并指出此時x的值.
分析:(1)利用誘導公式化簡函數的表達式,通過兩角和的正弦函數化為一個角的一個三角函數的形式,求出周期.
(2)通過(1)得到的函數表達式,利用正弦函數的最值,求出函數的最大值以及此時x的值.
解答:解:(1)∵f(x)=cos(
π
2
-x)+
3
sin(
π
2
+x)
=sinx+
3
cosx
=2(
1
2
sinx+
3
2
cosx)

=2(sinxcos
π
3
+sin
π
3
cosx)
=2sin(x+
π
3

∴T=2π
(2)當sin(x+
π
3
)=1時,
函數f(x)取最大值為:2
此時x+
π
3
=
π
2
+2kπ
   k∈Z即:x=2kπ+
π
6
  (k∈Z)
點評:本題是基礎題,考查利用誘導公式、兩角和的正弦函數化簡三角函數的表達式的方法,考查三角函數的最值、周期的求法,考查計算能力,常考題型.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(1)已知矩陣A=
a2
1b
有一個屬于特征值1的特征向量
α
=
2
-1

①求矩陣A;
②已知矩陣B=
1-1
01
,點O(0,0),M(2,-1),N(0,2),求△OMN在矩陣AB的對應變換作用下所得到的△O'M'N'的面積.
(2)已知在直角坐標系xOy中,直線l的參數方程為
x=t-3
y=
3
 t
(t為參數),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,曲線C的極坐標方程為ρ2-4ρco sθ+3=0.
①求直線l普通方程和曲線C的直角坐標方程;
②設點P是曲線C上的一個動點,求它到直線l的距離的取值范圍.
(3)已知函數f(x)=|x-1|+|x+1|.
①求不等式f(x)≥3的解集;
②若關于x的不等式f(x)≥a2-a在R上恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

www.ks5u.co

已知函數

   (I)當a<0時,求函數的單調區間;

   (II)若函數f(x)在[1,e]上的最小值是求a的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视