【題目】某校高三一班舉辦消防安全知識競賽,分別選出3名男生和3名女生組成男隊和女隊,每人一道必答題,答對則為本隊得10分,答錯與不答都得0分,已知男隊每人答對的概率依次為 ,
,
,女隊每人答對的概率都是
,設每人回答正確與否相互之間沒有影響,用X表示男隊的總得分.
(I) 求X的分布列及其數學期望E(X);
(Ⅱ)求在男隊和女隊得分之和為50的條件下,男隊比女隊得分高的概率.
【答案】解:(Ⅰ)X的所有可能取值為0,10,20,30,
P(X=0)= =
,
P(X=10)= +
=
,
P(X=20)= =
,
P(X=30)= ,
∴X的分布列為:
X | 0 | 10 | 20 | 30 |
P |
E(X)= +20×
=
.
(Ⅱ)設“男隊和女隊得分之和為50”為事件A,“男隊比女隊得分高”為事件B,
則P(A)= =
,
P(AB)= =
,
∴在男隊和女隊得分之和為50的條件下,男隊比女隊得分高的概率:
P(B|A)= =
=
【解析】(Ⅰ)X的所有可能取值為0,10,20,30,分別求出相應的概率,由此能求出X的分布列和E(X).(Ⅱ)設“男隊和女隊得分之和為50”為事件A,“男隊比女隊得分高”為事件B,由此利用條件概率計算公式能求出在男隊和女隊得分之和為50的條件下,男隊比女隊得分高的概率.
【考點精析】通過靈活運用離散型隨機變量及其分布列,掌握在射擊、產品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,稱表為離散型隨機變量X 的概率分布,簡稱分布列即可以解答此題.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=cos4x+sin2x,下列結論中錯誤的是( )
A.f(x)是偶函數
B.函f(x)最小值為
C. 是函f(x)的一個周期
D.函f(x)在(0, )內是減函數
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知△ABC內角A,B,C的對邊分別是a,b,c,且滿足a( sinC+cosC)=b+c.
(I) 求角A的大;
(Ⅱ)已知函數f(x)=sin(ωx+A)的最小正周期為π,求f(x)的減區間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=xlnx﹣ax2+ .
(I) 當a= 時,判斷f(x)在其定義上的單調性;
(Ⅱ)若函數f(x)有兩個極值點x1 , x2 , 其中x1<x2 . 求證:
(i)f(x2)>0;
(ii)x1+x2> .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=xlnx﹣ax2+ .
(I) 當a= 時,判斷f(x)在其定義上的單調性;
(Ⅱ)若函數f(x)有兩個極值點x1 , x2 , 其中x1<x2 . 求證:
(i)f(x2)>0;
(ii)x1+x2> .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某化肥廠生產甲、乙兩種混合肥料,需要A,B,C三種主要原料.生產1車皮甲種肥料和生產1車皮乙種肥料所需三種原料的噸數如下表所示:
現有A種原料200噸,B種原料360噸,C種原料300噸.在此基礎上生產甲、乙兩種肥料.已知生產1車皮甲種肥料,產生的利潤為2萬元;生產1車皮乙種肥料,產生的利潤為3萬元.分別用x,y表示計劃生產甲、乙兩種肥料的車皮數.
(1)用x,y列出滿足生產條件的數學關系式,并畫出相應的平面區域;
(2)問分別生產甲、乙兩種肥料各多少車皮,能夠產生最大的利潤?并求出此最大利潤.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com