精英家教網 > 高中數學 > 題目詳情
已知橢圓=1(a>b>0)與雙曲線=1有相同的焦點,則橢圓的離心率為
A.B.C.D.
D
本題考查橢圓和雙曲線的性質
設橢圓與雙曲線的公共焦點為.
對于橢圓;對于雙曲線
于是有,所以有
在橢圓中有,則,即,所以
所以
即橢圓的離記率為
故正確答案為D
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

的焦點為頂點,頂點為焦點的橢圓方程為
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓過點,且離心率為.
(1)求橢圓的方程;
(2)為橢圓的左右頂點,直線軸交于點,點是橢圓上異于的動點,直線分別交直線兩點.證明:當點在橢圓上運動時,恒為定值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分13分)
已知橢圓經過點(p,q),離心率其中p,q分別表示標準正態分布的期望值與標準差。

(1)求橢圓C的方程;
(2)設直線與橢圓C交于A,B兩點,點A關于x軸的對稱點為。①試建立的面積關于m的函數關系;②莆田十中高三(1)班數學興趣小組通過試驗操作初步推斷:“當m變化時,直線與x軸交于一個定點”。你認為此推斷是否正確?若正確,請寫出定點坐標,并證明你的結論;若不正確,請說明理由。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的中心在坐標原點,焦點在軸上,離心率為,橢圓上的點到焦點距離的最大值為
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若過點的直線與橢圓交于不同的兩點,且,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓C:(a>b>0)的離心率為,其左、右焦點分別是F1、F2,點P是坐標平面內的一點,且|OP|=,·(點O為坐標原點).
(Ⅰ)求橢圓C的方程;
(Ⅱ)直線y=x與橢圓C在第一象限交于A點,若橢圓C上兩點M、N使
λ,λ∈(0,2)求△OMN面積的最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知F是橢圓C的一個焦點,且橢圓C上的點到點F的最大距離為8
(1)求橢圓C的標準方程;
(2)已知圓O:,直線. 求當點在橢圓C上運動時,直線 被圓O所截得的弦長的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

橢圓的兩焦點為F1,F2,一直線過F1交橢圓于P、Q,則△PQF2的周長為 ___________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

.       已知定圓圓心為A;動圓M過點且與圓A相切,圓心M 的坐標為,它的軌跡記為C。
(1)求曲線C的方程;
(2)過一點N(1,0)作兩條互相垂直的直線與曲線C分別交于點P和Q,試問這兩條直線能否使得向量互相垂直?若存在,求出點P,Q的橫坐標,若不存在,請說明理由。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视