精英家教網 > 高中數學 > 題目詳情
設函數y=log3(x2+ax+10)
(1)a=6時,求函數的值域
(2)若函數的定義域為R,求a的取值范圍.
分析:(1)先利用二次函數的性質求真數的范圍,利用對數函數的單調性求出f(x)的值域.
(2)由題意可得,2x2-8x+m>0恒成立,則△=64-8m<0,解不等式可求m的范圍.
解答:解:(1)當a=6時,函數y=log3(x2+6x+10),令t=x2+6x+10
t=x2+6x+10=(x+3)2+1≥1,
∵底數3>1,
∴f(x)的最小值為log31=0,故f(x)的值域為[0,+∞).
(2)由題意可得,x2+ax+10>0恒成立
∴△=a2-40<0
∴-2
10
<a<2
10

故a的取值范圍:-2
10
<a<2
10
點評:本題考查對數函數圖象與性質的綜合應用、利用對數函數的單調性求函數的最值,考查了對數函數的恒成立問題,主要結合了二次函數的性質,要主要區別:若該函數的值域為R?△≥0.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設命題p:函數f(x)=x2-2ax與g(x)=x+
ax
在區間[1,2]都是減函數

命題q:函數y=log3(x2-2x+a)值域A⊆[2,+∞).
若p∨q為真,p∧q為假,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數y=f(x)的定義域為D,值域為B,如果存在函數x=g(t),使得函數y=f(g(t))的值域仍然是B,那么稱函數x=g(t)是函數y=f(x)的一個等值域變換.
有下列說法:
①若f(x)=2x+b,x∈R,x=t2-2t+3,t∈R,則x=g(t)不是f(x)的一個等值域變換;
②f(x)=|x|(x∈R),x=log3(t2+1),(t∈R),則x=g(t)是f(x)的一個等值域變換;
③若f(x)=x2-x+1,x∈R,x=g(t)=2t,t∈R,則x=g(t)是f(x)的一個等值域變換;
④設f(x)=log2x(x>0),若x=g(t)=5t+5-t+m是y=f(x)的一個等值域變換,且函數f(g(t))的定義域為R,則m的取值范圍是m≤-2.
在上述說法中,正確說法的個數為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數y=f(x)在R內有定義,對于給定的正數k,定義函數fk(x)=
f(x),f(x)>k
k,f(x)≤k.
,若函數f(x)=log3|x|,則當k=
1
3
時,函數fk(x)的單調減區間為
(-∞,-
33
]
(-∞,-
33
]

查看答案和解析>>

科目:高中數學 來源:2012年江蘇省常州市教育學會高三1月學業水平監測數學試題(解析版) 題型:解答題

設函數y=f(x)在R內有定義,對于給定的正數k,定義函數,若函數f(x)=log3|x|,則當時,函數fk(x)的單調減區間為   

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视