進貨原價為80元的商品400個,按90元一個售出時,可全部賣出.已知這種商品每個漲價一元,其銷售數就減少20個,問售價應為多少時所獲得利潤最大?
科目:高中數學 來源: 題型:解答題
某投資公司年初用萬元購置了一套生產設備并即刻生產產品,已知與生產產品相關的各種配套費用第一年需要支出
萬元,第二年需要支出
萬元,第三年需要支出
萬元,……,每年都比上一年增加支出
萬元,而每年的生產收入都為
萬元.假設這套生產設備投入使用
年,
,生產成本等于生產設備購置費與這
年生產產品相關的各種配套費用的和,生產總利潤
等于這
年的生產收入與生產成本的差. 請你根據這些信息解決下列問題:
(Ⅰ)若,求
的值;
(Ⅱ)若干年后,該投資公司對這套生產設備有兩個處理方案:
方案一:當年平均生產利潤取得最大值時,以萬元的價格出售該套設備;
方案二:當生產總利潤取得最大值時,以
萬元的價格出售該套設備. 你認為哪個方案更合算?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
“活水圍網”養魚技術具有養殖密度高、經濟效益好的特點.研究表明:“活水圍網”養魚時,某種魚在一定的條件下,每尾魚的平均生長速度(單位:千克/年)是養殖密度
(單位:尾/立方米)的函數.當
不超過4(尾/立方米)時,
的值為
(千克/年);當
時,
是
的一次函數;當
達到
(尾/立方米)時,因缺氧等原因,
的值為
(千克/年).
(1)當時,求函數
的表達式;
(2)當養殖密度為多大時,魚的年生長量(單位:千克/立方米)
可以達到最大,并求出最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某工廠某種產品的年固定成本為250萬元,每生產千件,需另投入成本為
,當年產量不足80千件時,
(萬元).當年產量不小于80千件時,
(萬元),每件商品售價為0.05萬元,通過市場分析,該廠生產的商品能全部售完.
(Ⅰ)寫出年利潤(萬元)關于年產量
(千件)的函數解析式;
(Ⅱ)年產量為多少千件時,該廠在這一商品的生產中所獲利潤最大?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數(
為實數,
,
),
(Ⅰ)若,且函數
的值域為
,求
的表達式;
(Ⅱ)在(Ⅰ)的條件下,當時,
是單調函數,求實數
的取值范圍;
(Ⅲ)設,
,
,且函數
為偶函數,判斷
是否大于
?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)=x2+2ax+3,x∈[-4,6].
(1)當a=-2時,求f(x)的最值;
(2)求實數a的取值范圍,使y=f(x)在區間[-4,6]上是單調函數;
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
運貨卡車以每小時千米的速度勻速行駛130千米
(單位:千米/小時).假設汽油的價格是每升2元,而汽車每小時耗油
升,司機的工資是每小時14元.
(Ⅰ)求這次行車總費用關于
的表達式;
(Ⅱ)當為何值時,這次行車的總費用最低,并求出最低費用的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某水域一艘裝載濃硫酸的貨船發生側翻,導致濃硫酸泄漏,對河水造成了污染.為減
少對環境的影響,環保部門迅速反應,及時向污染河道投入固體堿,個單位的固體堿在水中
逐漸溶化,水中的堿濃度與時間
(小時)的關系可近似地表示為:
,只有當污染河道水中堿的濃度不低于
時,才能對污
染產生有效的抑制作用.
(1)如果只投放1個單位的固體堿,則能夠維持有效的抑制作用的時間有多長?
(2)第一次投放1單位固體堿后,當污染河道水中的堿濃度減少到時,馬上再投放1個單
位的固體堿,設第二次投放后水中堿濃度為,求
的函數式及水中堿濃度的最大值.
(此時水中堿濃度為兩次投放的濃度的累加)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com