精英家教網 > 高中數學 > 題目詳情

【題目】王府井百貨分店今年春節期間,消費達到一定標準的顧客可進行一次抽獎活動,隨著抽獎活動的有效開展,參與抽獎活動的人數越來越多,該分店經理對春節前7天參加抽獎活動的人數進行統計, 表示第天參加抽獎活動的人數,得到統計表格如下:

1

2

3

4

5

6

7

5

8

8

10

14

15

17

經過進一步統計分析,發現具有線性相關關系.

(1)請根據上表提供的數據,用最小二乘法求出關于的線性回歸方程;

(2)判斷變量之間是正相關還是負相關;

(3)若該活動只持續10天,估計共有多少名顧客參加抽獎.

參與公式: , ,

【答案】(1);(2)正相關;(3)140人.

【解析】試題分析:(1)利用的公式求解回歸方程即可;

(2)由散點的趨勢可判斷正相關;

(3)用回歸方程估計即可.

試題解析:

1依題意:

,

,

關于的線性回歸方程為

(2)正相關

3預測時, 時, , 時, ,

此次活動參加抽獎的人數約為人.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設A={0,1,2,4},B={ ,0,1,2,6,8},則下列對應關系能構成A到B的映射的是(
A.f:x→x3﹣1
B.f:x→(x﹣1)2
C.f:x→2x1
D.f:x→2x

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= cosx(sinx+cosx).
(1)若0<α< ,且sinα= ,求f(α)的值;
(2)求函數f(x)的最小正周期及單調遞增區間.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,拋物線C1:x2=4y,C2:x2=-2py(p>0).M(x0,y0)在拋物線C2,MC1的切線,切點為A,B(M為原點O,A,B重合于O).x0=1-,切線MA的斜率為-.

(1)p的值;

(2)MC2上運動時,求線段AB中點N的軌跡方程(A,B重合于O,中點為O).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某食品廠為了檢查甲、乙兩條自動包裝流水線的生產情況,隨機在這兩條流水線上各抽取40件產品作為樣本,并稱出它們的重量(單位:克),重量值落在內的產品為合格品,否則為不合格品,統計結果如表:

(Ⅰ)求甲流水線樣本合格的頻率;

(Ⅱ)從乙流水線上重量值落在內的產品中任取2個產品,求這2件產品中恰好只有一件合格的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知△ABC的三個內角A,B,C,滿足sinC=
(1)判斷△ABC的形狀;
(2)設三邊a,b,c成等差數列且SABC=6cm2 , 求△ABC三邊的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,角A、B、C所對的邊分別為a、b、c,已知
(1)求sinB的值;
(2)求c的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】從某校高三學生中隨機抽取了名學生,統計了期末數學考試成績如下表:

(1)請在頻率分布表中的①、②位置上填上相應的數據,并在給定的坐標系中作出這些數據的頻率分布直方圖,再根據頻率分布直方圖估計這名學生的平均成績;

(2)用分層抽樣的方法在分數在內的學生中抽取一個容量為的樣本,將該樣本看成一個總體,從中任取人,求至少有人的分數在內的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知向量 =(2cos2x, ), =(1,sin2x),函數f(x)= ﹣1.
(1)當x= 時,求|a﹣b|的值;
(2)求函數f(x)的最小正周期以及單調遞增區間;
(3)求方程f(x)=k,(0<k<2),在[﹣ ]內的所有實數根之和.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视