精英家教網 > 高中數學 > 題目詳情

【題目】已知函數

1)當時,求函數在區間上的最大值與最小值;

2)若在上存在,使得成立,求的取值范圍.

【答案】1, ;(2.

【解析】試題分析:(1)由得增區間, 得減區間,進而得,比較端點處函數值可得;(2)只需要函數上的最小值小于零,利用導數研究的單調性,討論三種情況,分別求得的最小值,進而分別求得的取值范圍,求并集即可.

試題解析:(1)當時,

,

,得,

變化時, , 的變化情況如下表:



1




0




極小值


因為,

,

所以在區間上的最大值與最小值分別為:

,

2)設.若在上存在,使得,即成立,則只需要函數上的最小值小于零.

,

,得(舍去)或

,即時, 上單調遞減,

上的最小值為,由,可得

因為,所以

,即時, 上單調遞增,

上的最小值為,由

可得(滿足).

,即時, 上單調遞減,在上單調遞增,故上的最小值為

因為,所以,

所以,即,不滿足題意,舍去.

綜上可得,

所以實數的取值范圍為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖幾何體是四棱錐,為正三角形,,,,且

1求證:平面平面;

2是棱的中點,求證:平面;

3求二面角的平面角的余弦值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設不等式組所表示的平面區域為,記內的整點個數為,(整點即橫、縱坐標均為整數的點)

(1)計算的值;

(2)求數列的通項公式;

(3)記數列的前項和為,且,若對于一切的正整數,總有,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在某次測量中得到的A樣本數據如下:82,84,84,8686,8688,8888,88,若樣本B數據恰好是樣本A數據都加上2后所得數據AB兩樣本的下列數字特征對應相同的是(  )

A. 眾數 B. 平均數

C. 中位數 D. 標準差

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓,直線過點

(1)求圓的圓心坐標和半徑;

(2)若直線與圓相切,求直線的方程;

(3)若直線與圓相交于P,Q兩點,求三角形CPQ的面積的最大值,并求此時

直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)時,求函數的最小值;

(2)若函數的最小值為,令,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設橢圓的焦點在軸上.

(1)若橢圓的焦距為1,求橢圓的方程;

(2)設分別是橢圓的左、右焦點,為橢圓上第一象限內的點,直線軸于點,并且.證明:當變化時,點在定直線上.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設橢圓的左焦點為,離心率為,橢圓與軸與左點與點的距離為

(1)求橢圓方程;

(2)過點的直線與橢圓交于不同的兩點,當面積為時,求

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數)的圖象與直線)相切,并且切點橫坐標依次成公差為的等差數列,且的最大值為1.

(1),求函數的單調遞增區間;

(2)將的圖象向左平移個單位,得到函數的圖象,若函數上有零點,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视