【題目】甲乙兩人進行兩種游戲,兩種游戲規則如下:游戲Ⅰ:口袋中有質地、大小完全相同的5個球,編號分別為1,2,3,4,5,甲先摸出一個球,記下編號,放回后乙再摸一個球,記下編號,如果兩個編號的和為偶數算甲贏,否則算乙贏.游戲Ⅱ:口袋中有質地、大小完全相同的6個球,其中4個白球,2個紅球,由裁判有放回的摸兩次球,即第一次摸出記下顏色后放回再摸第二次,摸出兩球同色算甲贏,摸出兩球不同色算乙贏.
(Ⅰ)求游戲Ⅰ中甲贏的概率;
(Ⅱ)求游戲Ⅱ中乙贏的概率;并比較這兩種游戲哪種游戲更公平?試說明理由.
【答案】解:(Ⅰ)∵游戲Ⅰ中有放回地依次摸出兩球基本事件有5*5=25種,其中甲贏包含(1,1)(1,3)(1,5)(3,3)(3,5)(5,5)(3,1)(5,1)(5,3)(2,2)(2,4)(4,4)(4,2)13種基本事件,
∴游戲Ⅰ中甲贏的概率為:P=
(Ⅱ)設4個白球為a,b,c,d,2個紅球為A,B,則游戲Ⅱ中有放回地依次摸出兩球基本事件有6*6=36種,其中乙贏包含(a,A),(b,A),(c,A)(d,A)(a,B)(b,B)(c,B)(d,B)(A,a)(A,b)(A,c)(A,d)(B,a)(B,b)(B,c)(B,d)16種基本事件,
∴游戲Ⅱ中乙贏的概率為:P’=
∵ .∴游戲Ⅰ更公平
【解析】(Ⅰ)列出甲贏包含基本事件總數,所有基本事件數目,即可求解游戲Ⅰ中甲贏的概率.(Ⅱ)設4個白球為a,b,c,d,2個紅球為A,B,則游戲Ⅱ中有放回地依次摸出兩球基本事件有6*6=36種,其中乙贏包含16種基本事件,求出概率,即可判斷游戲的公平程度.
科目:高中數學 來源: 題型:
【題目】已知集合,對于集合
的兩個非空子集
,
,若
,則稱
為集合
的一組“互斥子集”.記集合
的所有“互斥子集”的組數為
(視
與
為同一組“互斥子集”).
(1)寫出,
,
的值;
(2)求.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為迎接中國共產黨的十九大的到來,某校舉辦了“祖國,你好”的詩歌朗誦比賽.該校高三年級準備從包括甲、乙、丙在內的7名學生中選派4名學生參加,要求甲、乙、丙這3名同學中至少有1人參加,且當這3名同學都參加時,甲和乙的朗誦順序不能相鄰,那么選派的4名學生不同的朗誦順序的種數為( )
A. 720 B. 768 C. 810 D. 816
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校為加強學生的交通安全教育,對學校旁邊,
兩個路口進行了8天的檢測調查,得到每天各路口不按交通規則過馬路的學生人數(如莖葉圖所示),且
路口數據的平均數比
路口數據的平均數小2.
(1)求出路口8個數據中的中位數和莖葉圖中
的值;
(2)在路口的數據中任取大于35的2個數據,求所抽取的兩個數據中至少有一個不小于40的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列關于公差d>0的等差數列{an}的四個命題:
p1:數列{an}是遞增數列;
p2:數列{nan}是遞增數列;
p3:數列 是遞增數列;
p4:數列{an+3nd}是遞增數列;
其中真命題是( )
A.p1 , p2
B.p3 , p4
C.p2 , p3
D.p1 , p4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題p:關于x的不等式x2+2ax+4>0,對一切x∈R恒成立,q:函數f(x)=(3﹣2a)x是增函數,若p或q為真,p且q為假,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知菱形ABCD的邊長為2,∠BAD=120°,點E,F分別在邊BC,DC上, =λ
,
=μ
,若
=1,
=﹣
,則λ+μ=( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com