精英家教網 > 高中數學 > 題目詳情

(本小題滿分18分)已知函數,

(Ⅰ)若,求函數的極值;

(Ⅱ)設函數,求函數的單調區間;

(Ⅲ)若在)上存在一點,使得成立,求的取值范圍.

 

【答案】

(Ⅰ)處取得極小值1;(Ⅱ)時,上單調遞減,在上單調遞增;  時,函數上單調遞增。

(Ⅲ) .

【解析】

試題分析:(Ⅰ)的定義域為,

時,,

1

0

+

極小

 

所以處取得極小值1.

(Ⅱ),

    

①當時,即時,在,在,

所以上單調遞減,在上單調遞增;  

②當,即時,在,

所以函數上單調遞增.       

(III)在上存在一點,使得成立,即 在上存在一點,使得,

即函數上的最小值小于零.

由(Ⅱ)可知

①當,即時,上單調遞減,

所以的最小值為,由可得,

因為,所以;

②當,即時, 上單調遞增,

所以的最小值為,由可得;

③當,即時, 可得的最小值為,

因為,所以

   

此時,不成立.   

綜上討論可得所求的取值范圍是:.

考點:利用導數研究函數的單調性;利用導數研究函數的極值。

點評:①極值點的導數為0,但導數為0的點不定是極值點。②利用導數研究函數的單調性時,一定要先求函數的定義域。③注意恒成立問題與存在性問題的區別。

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(本小題滿分18分)如圖,將圓分成個扇形區域,用3種不同顏色給每一個扇形區域染色,要求相鄰區域顏色互異,把不同的染色方法種數記為。求

(Ⅰ);

(Ⅱ)的關系式;

(Ⅲ)數列的通項公式,并證明。

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分18分)已知數列{an}、{bn}、{cn}的通項公式滿足bn=an+1-an,cn=bn+1-bn(n∈N*?),若數列{bn}是一個非零常數列,則稱數列{an}是一階等差數列;若數列{cn}是一個非零常數列,則稱數列{an}是二階等差數列?(1)試寫出滿足條件a=1,b1=1,cn=1(n∈N*?)的二階等差數列{an}的前五項;(2)求滿足條件(1)的二階等差數列{an}的通項公式an;(3)若數列{an}首項a=2,且滿足cn-bn+1+3an=-2n+1(n∈N*?),求數列{an}的通項公式

查看答案和解析>>

科目:高中數學 來源:2015屆廣東汕頭達濠中學高一上期末數學試卷(解析版) 題型:解答題

(本小題滿分18分)知函數的圖象的一部分如下圖所示。

(1)求函數的解析式;

(2

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年上海市長寧區高三教學質量測試理科數學 題型:解答題

(本小題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.

(文)已知數列中,

(1)求證數列不是等比數列,并求該數列的通項公式;

(2)求數列的前項和;

(3)設數列的前項和為,若對任意恒成立,求的最小值.

 

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年上海市長寧區高三教學質量測試理科數學 題型:解答題

本小題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.

設函數是定義域為R的奇函數.

(1)求k值;

(2)(文)當時,試判斷函數單調性并求不等式f(x2+2x)+f(x-4)>0的解集;

(理)若f(1)<0,試判斷函數單調性并求使不等式恒成立的的取值范圍;

(3)若f(1)=,且g(x)=a 2xa - 2x-2m f(x) 在[1,+∞)上的最小值為-2,求m的值.

 

 

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视