分析:本題考查的是函數的奇偶性和單調性以及解不等式的綜合類問題.在解答時,首先要結合奇偶性和單調性對不等式進行轉化變形,將問題轉化為解不等式:2xf(x)<0,
然后再分類討論即可獲得問題的解答.
解:∵函數f(x)是奇函數,函數f(x)在(0,+∞)上是增函數,
∴它在(-∞,0)上也是增函數.∵f(-x)=-f(x),
∴f(-1)=f(1)=0.
不等式x[f(x)-f(-x)]<0可化為2xf(x)<0,
即xf(x)<0,
∴當x<0時,
可得f(x)>0=f(-1),∴x>-1,
∴-1<x<0;
當x>0時,可得f(x)<0=f(1),
∴x<1,∴0<x<1.
綜上,不等式x[f(x)-f(-x)]<0的解集為{x|-1<x0,或0<x<1}.
故選D.