試題分析:根據函數奇偶性定義,得f(-x+2)=f(x+2).當x<2時,由于4-x>2,將4-x代入已知條件的解析式,可得f(4-x)=,x2-2x-4,而f(4-x)與f(x)相等,由此則不難得到x<2時f(x)的解析式解:∵f(x+2)是偶函數,∴f(-x+2)=f(x+2),設x<2,則4-x>2,可得f(4-x)=(4-x)2-6(4-x)+4=x2-2x-4,,∵f(4-x)=f[2+(2-x)]=f[2-(2-x)]=f(x),∴當x<2時,f(x)=f(4-x)=x2-2x-4,,故答案為:f(x)=x2-2x-4
點評:本題給出定義在R上且圖象關于x=2對稱的函數,在已知x≥2時的解析式情況下求則x<2時f(x)的解析式.著重考查了函數的奇偶性和函數解析式求解的常用方法的知識,屬于基礎題