數學英語物理化學 生物地理
數學英語已回答習題未回答習題題目匯總試卷匯總
已知圓C的圓心是直線與x軸的交點,且圓C與直線x+y+3=0相切,則圓C的方程為
解析試題分析:直線與圓的位置關系通常利用圓心到直線的距離或數形結合的方法求解,欲求圓的方程則先求出圓心和半徑,根據圓與直線相切建立等量關系,解之即可解:直線化成普通方程是x-y+1=0,令y=0得x=-1,所以直線x-y+1=0,與x軸的交點為(-1.0)因為直線與圓相切,所以圓心到直線的距離等于半徑,即 r= = ,所以圓C的方程為;故答案為考點:直線與圓的位置關系點評:本題主要考查直線與圓的位置關系,以及圓的標準方程等基礎知識,屬于容易題.
科目:高中數學 來源: 題型:填空題
已知點B為雙曲線的左準線與軸的交點,點A坐標為(0,b),若滿足點P在雙曲線上,則雙曲線的離心率為_____________
過點的直線與拋物線交于兩點,記線段的中點為,過點和這個拋物線的焦點的直線為,的斜率為,則直線的斜率與直線的斜率之比可表示為的函數 __ .
拋物線上的兩點、到焦點的距離之和是,則線段的中點到軸的距離是 .
如圖,拋物線形拱橋的頂點距水面4米時,測得拱橋內水面寬為16米;當水面升高3米后,拱橋內水面的寬度為 _________米.
設A、B是拋物線上的兩個動點,且則AB的中點M到軸的距離的最小值為 。
若雙曲線的漸近線方程為,它的一個焦點是,則雙曲線的標準方程是 .
雙曲線虛軸的一個端點為,兩個焦點為、,,則雙曲線的離心率為____________.
設是雙曲線的兩個焦點,P是C上一點,若且的最小內角為,則C的離心率為___。
百度致信 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區