精英家教網 > 高中數學 > 題目詳情
(2011•上海模擬)已知f(x)=
3
sinωx+3cosωx(ω>0)

(1)若y=f(x+θ)(0<θ<
π
2
)
是周期為π的偶函數,求ω和θ的值;
(2)g(x)=f(3x)在(-
π
2
π
3
)
上是增函數,求ω的最大值;并求此時g(x)在[0,π]上的取值范圍.
分析:(1)依題意,y=f(x+θ)=2
3
sin[ω(x+θ)+
π
3
],利用y=f(x+θ)是周期為π的偶函數,0<θ<
π
2
,即可求得ω和θ的值;
(2)g(x)=f(3x)=2
3
sin(3ωx+),利用正弦函數的單調性可求ω的最大值;并求此時f(x)在[0,π]上的取值范圍.
解答:解:(1)∵f(x)=
3
sinωx+3cosωx=2
3
sin(ωx+
π
3
),
∴y=f(x+θ)=2
3
sin[ω(x+θ)+
π
3
],
∵y=f(x+θ)是周期為π的偶函數,0<θ<
π
2
,
∴ω=2,2θ+
π
3
=kπ+
π
2
∈(
π
3
,
3
),
∴k=0,θ=
π
12

(2))∵g(x)=f(3x)=2
3
sin(3ωx+
π
3
)在(-
π
2
,
π
3
)上是增函數,
∴由2kπ-
π
2
≤3ωx+
π
3
≤2kπ+
π
2
(k∈Z),ω>0得:
2kπ-
6
≤x≤
2kπ+
π
6
(k∈Z),
∵f(3x)=2
3
sin(3ωx+
π
3
)在(-
π
2
,
π
3
)上是增函數,
π
3
π
6
,
-
6
≤-
π
2
,ω>0
∴0<ω≤
1
6

∴ωmax=
1
6

當ω=
1
6
時,f(x)=2
3
sin(
1
6
x+
π
3
),f(3x)=2
3
sin(
1
2
x+
π
3
).
∵x∈[0,π],
1
2
x+
π
3
∈[
π
3
6
],
1
2
≤sin(
1
2
x+
π
3
)≤1.
3
≤2
3
sin(
1
6
x+
π
3
)≤2
3

∴當x∈[0,π],f(3x)=2
3
sin(
1
2
x+
π
3
)∈[
3
,2
3
].
點評:本題考查由y=Asin(ωx+φ)的部分圖象確定其解析式,考查正弦函數的周期與單調性,考查三角綜合運算能力,屬于難題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2011•上海模擬)如圖,在△ABC中,∠BAC=90°,AB=6,D在斜邊BC上,且CD=2DB,則
AB
AD
的值為
24
24

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•上海模擬)已知數列{an}的前n項和Sn=2n2+pn,a7=11,若ak+ak+1>12,則正整數k的最小值為
6
6

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•上海模擬)已知0<a<1,則函數y=a|x|-|logax|的零點的個數為
2
2

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•上海模擬)設角α、β是銳角,則“α+β=
π
4
”是“(1+tanα)(1+tanβ)=2”成立的(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•上海模擬)設a是實數.若函數f(x)=|x+a|-|x-1|是定義在R上的奇函數,但不是偶函數,則函數f(x)的遞增區間為
〔-1,1〕
〔-1,1〕

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视